Loading…
Cellular determinants of metabolite concentration ranges
Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identif...
Saved in:
Published in: | PLoS computational biology 2019-01, Vol.15 (1), p.e1006687-e1006687 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813 |
container_end_page | e1006687 |
container_issue | 1 |
container_start_page | e1006687 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Küken, Anika Eloundou-Mbebi, Jeanne M O Basler, Georg Nikoloski, Zoran |
description | Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications. |
doi_str_mv | 10.1371/journal.pcbi.1006687 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250635599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A571883987</galeid><doaj_id>oai_doaj_org_article_e6afc712610a491dbdf7a5da1b40951b</doaj_id><sourcerecordid>A571883987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</originalsourceid><addsrcrecordid>eNqVkktvEzEQx1cIREvhGyCIxAUOCfb6falURQUiVSDxOFuzfgRHu-tgexF8-7pkWzWIC_LBo_Fv_vPwNM1zjFaYCPx2F6c0Qr_amy6sMEKcS_GgOcWMkaUgTD68Z580T3LeIVRNxR83JwRxIRBmp41cu76fekgL64pLQxhhLHkR_WJwBbrYh-IWJo7GjSVBCXFcJBi3Lj9tHnnos3s232fNt3eXX9cfllef3m_WF1dLwwkpS0Zcxwm3HrdEUu-olFRaZAlGVHWICKDcK6GYAt4aT4R1lnGJwPCuwpicNS8Puvs-Zj03nXXbMsQJY0pVYnMgbISd3qcwQPqtIwT9xxHTVkMqwfROOw7eCNxyjIAqbDvrBTALuKNIMdxVrfM529QNzh667o9Ej1_G8F1v40_NCWWU0irwehZI8cfkctFDyKbOGEYXp1o3FopSSVBb0Vd_of_ubnWgtlAbCKOPNa-px7oh1I9xPlT_BRNYSqKkqAFvjgIqU9yvsoUpZ7358vk_2I_HLD2wJsWck_N3U8FI32zkbfn6ZiP1vJE17MX9id4F3a4guQZrANxk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250635599</pqid></control><display><type>article</type><title>Cellular determinants of metabolite concentration ranges</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Küken, Anika ; Eloundou-Mbebi, Jeanne M O ; Basler, Georg ; Nikoloski, Zoran</creator><contributor>Maranas, Costas D.</contributor><creatorcontrib>Küken, Anika ; Eloundou-Mbebi, Jeanne M O ; Basler, Georg ; Nikoloski, Zoran ; Maranas, Costas D.</creatorcontrib><description>Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006687</identifier><identifier>PMID: 30677015</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Biochemistry ; Bioinformatics ; Biology ; Biology and Life Sciences ; Cellular communication ; Computer and Information Sciences ; Computer simulation ; Determinants ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Genomes ; Genomics ; Growth rate ; Kinetics ; Medicine and Health Sciences ; Metabolic networks ; Metabolic Networks and Pathways - genetics ; Metabolism ; Metabolites ; Metabolome - genetics ; Models, Biological ; Ordinary differential equations ; Organisms ; Physical Sciences ; Physiological aspects ; Physiology ; Systems Biology - methods</subject><ispartof>PLoS computational biology, 2019-01, Vol.15 (1), p.e1006687-e1006687</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Küken et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Küken et al 2019 Küken et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</citedby><cites>FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</cites><orcidid>0000-0003-1367-0719 ; 0000-0003-2671-6763 ; 0000-0002-0313-6400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250635599/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250635599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30677015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maranas, Costas D.</contributor><creatorcontrib>Küken, Anika</creatorcontrib><creatorcontrib>Eloundou-Mbebi, Jeanne M O</creatorcontrib><creatorcontrib>Basler, Georg</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><title>Cellular determinants of metabolite concentration ranges</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.</description><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cellular communication</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Determinants</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Growth rate</subject><subject>Kinetics</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome - genetics</subject><subject>Models, Biological</subject><subject>Ordinary differential equations</subject><subject>Organisms</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Systems Biology - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktvEzEQx1cIREvhGyCIxAUOCfb6falURQUiVSDxOFuzfgRHu-tgexF8-7pkWzWIC_LBo_Fv_vPwNM1zjFaYCPx2F6c0Qr_amy6sMEKcS_GgOcWMkaUgTD68Z580T3LeIVRNxR83JwRxIRBmp41cu76fekgL64pLQxhhLHkR_WJwBbrYh-IWJo7GjSVBCXFcJBi3Lj9tHnnos3s232fNt3eXX9cfllef3m_WF1dLwwkpS0Zcxwm3HrdEUu-olFRaZAlGVHWICKDcK6GYAt4aT4R1lnGJwPCuwpicNS8Puvs-Zj03nXXbMsQJY0pVYnMgbISd3qcwQPqtIwT9xxHTVkMqwfROOw7eCNxyjIAqbDvrBTALuKNIMdxVrfM529QNzh667o9Ej1_G8F1v40_NCWWU0irwehZI8cfkctFDyKbOGEYXp1o3FopSSVBb0Vd_of_ubnWgtlAbCKOPNa-px7oh1I9xPlT_BRNYSqKkqAFvjgIqU9yvsoUpZ7358vk_2I_HLD2wJsWck_N3U8FI32zkbfn6ZiP1vJE17MX9id4F3a4guQZrANxk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Küken, Anika</creator><creator>Eloundou-Mbebi, Jeanne M O</creator><creator>Basler, Georg</creator><creator>Nikoloski, Zoran</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1367-0719</orcidid><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0002-0313-6400</orcidid></search><sort><creationdate>20190101</creationdate><title>Cellular determinants of metabolite concentration ranges</title><author>Küken, Anika ; Eloundou-Mbebi, Jeanne M O ; Basler, Georg ; Nikoloski, Zoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cellular communication</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Determinants</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Growth rate</topic><topic>Kinetics</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome - genetics</topic><topic>Models, Biological</topic><topic>Ordinary differential equations</topic><topic>Organisms</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Systems Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küken, Anika</creatorcontrib><creatorcontrib>Eloundou-Mbebi, Jeanne M O</creatorcontrib><creatorcontrib>Basler, Georg</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küken, Anika</au><au>Eloundou-Mbebi, Jeanne M O</au><au>Basler, Georg</au><au>Nikoloski, Zoran</au><au>Maranas, Costas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular determinants of metabolite concentration ranges</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>e1006687</spage><epage>e1006687</epage><pages>e1006687-e1006687</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30677015</pmid><doi>10.1371/journal.pcbi.1006687</doi><orcidid>https://orcid.org/0000-0003-1367-0719</orcidid><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0002-0313-6400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-01, Vol.15 (1), p.e1006687-e1006687 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2250635599 |
source | Publicly Available Content Database; PubMed Central |
subjects | Bacteria Biochemistry Bioinformatics Biology Biology and Life Sciences Cellular communication Computer and Information Sciences Computer simulation Determinants E coli Enzymes Escherichia coli Escherichia coli - genetics Genomes Genomics Growth rate Kinetics Medicine and Health Sciences Metabolic networks Metabolic Networks and Pathways - genetics Metabolism Metabolites Metabolome - genetics Models, Biological Ordinary differential equations Organisms Physical Sciences Physiological aspects Physiology Systems Biology - methods |
title | Cellular determinants of metabolite concentration ranges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20determinants%20of%20metabolite%20concentration%20ranges&rft.jtitle=PLoS%20computational%20biology&rft.au=K%C3%BCken,%20Anika&rft.date=2019-01-01&rft.volume=15&rft.issue=1&rft.spage=e1006687&rft.epage=e1006687&rft.pages=e1006687-e1006687&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006687&rft_dat=%3Cgale_plos_%3EA571883987%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250635599&rft_id=info:pmid/30677015&rft_galeid=A571883987&rfr_iscdi=true |