Loading…

Cellular determinants of metabolite concentration ranges

Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identif...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2019-01, Vol.15 (1), p.e1006687-e1006687
Main Authors: Küken, Anika, Eloundou-Mbebi, Jeanne M O, Basler, Georg, Nikoloski, Zoran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813
cites cdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813
container_end_page e1006687
container_issue 1
container_start_page e1006687
container_title PLoS computational biology
container_volume 15
creator Küken, Anika
Eloundou-Mbebi, Jeanne M O
Basler, Georg
Nikoloski, Zoran
description Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.
doi_str_mv 10.1371/journal.pcbi.1006687
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250635599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A571883987</galeid><doaj_id>oai_doaj_org_article_e6afc712610a491dbdf7a5da1b40951b</doaj_id><sourcerecordid>A571883987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</originalsourceid><addsrcrecordid>eNqVkktvEzEQx1cIREvhGyCIxAUOCfb6falURQUiVSDxOFuzfgRHu-tgexF8-7pkWzWIC_LBo_Fv_vPwNM1zjFaYCPx2F6c0Qr_amy6sMEKcS_GgOcWMkaUgTD68Z580T3LeIVRNxR83JwRxIRBmp41cu76fekgL64pLQxhhLHkR_WJwBbrYh-IWJo7GjSVBCXFcJBi3Lj9tHnnos3s232fNt3eXX9cfllef3m_WF1dLwwkpS0Zcxwm3HrdEUu-olFRaZAlGVHWICKDcK6GYAt4aT4R1lnGJwPCuwpicNS8Puvs-Zj03nXXbMsQJY0pVYnMgbISd3qcwQPqtIwT9xxHTVkMqwfROOw7eCNxyjIAqbDvrBTALuKNIMdxVrfM529QNzh667o9Ej1_G8F1v40_NCWWU0irwehZI8cfkctFDyKbOGEYXp1o3FopSSVBb0Vd_of_ubnWgtlAbCKOPNa-px7oh1I9xPlT_BRNYSqKkqAFvjgIqU9yvsoUpZ7358vk_2I_HLD2wJsWck_N3U8FI32zkbfn6ZiP1vJE17MX9id4F3a4guQZrANxk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250635599</pqid></control><display><type>article</type><title>Cellular determinants of metabolite concentration ranges</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Küken, Anika ; Eloundou-Mbebi, Jeanne M O ; Basler, Georg ; Nikoloski, Zoran</creator><contributor>Maranas, Costas D.</contributor><creatorcontrib>Küken, Anika ; Eloundou-Mbebi, Jeanne M O ; Basler, Georg ; Nikoloski, Zoran ; Maranas, Costas D.</creatorcontrib><description>Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006687</identifier><identifier>PMID: 30677015</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Biochemistry ; Bioinformatics ; Biology ; Biology and Life Sciences ; Cellular communication ; Computer and Information Sciences ; Computer simulation ; Determinants ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Genomes ; Genomics ; Growth rate ; Kinetics ; Medicine and Health Sciences ; Metabolic networks ; Metabolic Networks and Pathways - genetics ; Metabolism ; Metabolites ; Metabolome - genetics ; Models, Biological ; Ordinary differential equations ; Organisms ; Physical Sciences ; Physiological aspects ; Physiology ; Systems Biology - methods</subject><ispartof>PLoS computational biology, 2019-01, Vol.15 (1), p.e1006687-e1006687</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Küken et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Küken et al 2019 Küken et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</citedby><cites>FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</cites><orcidid>0000-0003-1367-0719 ; 0000-0003-2671-6763 ; 0000-0002-0313-6400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250635599/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250635599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30677015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maranas, Costas D.</contributor><creatorcontrib>Küken, Anika</creatorcontrib><creatorcontrib>Eloundou-Mbebi, Jeanne M O</creatorcontrib><creatorcontrib>Basler, Georg</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><title>Cellular determinants of metabolite concentration ranges</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.</description><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cellular communication</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Determinants</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Growth rate</subject><subject>Kinetics</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome - genetics</subject><subject>Models, Biological</subject><subject>Ordinary differential equations</subject><subject>Organisms</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Systems Biology - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktvEzEQx1cIREvhGyCIxAUOCfb6falURQUiVSDxOFuzfgRHu-tgexF8-7pkWzWIC_LBo_Fv_vPwNM1zjFaYCPx2F6c0Qr_amy6sMEKcS_GgOcWMkaUgTD68Z580T3LeIVRNxR83JwRxIRBmp41cu76fekgL64pLQxhhLHkR_WJwBbrYh-IWJo7GjSVBCXFcJBi3Lj9tHnnos3s232fNt3eXX9cfllef3m_WF1dLwwkpS0Zcxwm3HrdEUu-olFRaZAlGVHWICKDcK6GYAt4aT4R1lnGJwPCuwpicNS8Puvs-Zj03nXXbMsQJY0pVYnMgbISd3qcwQPqtIwT9xxHTVkMqwfROOw7eCNxyjIAqbDvrBTALuKNIMdxVrfM529QNzh667o9Ej1_G8F1v40_NCWWU0irwehZI8cfkctFDyKbOGEYXp1o3FopSSVBb0Vd_of_ubnWgtlAbCKOPNa-px7oh1I9xPlT_BRNYSqKkqAFvjgIqU9yvsoUpZ7358vk_2I_HLD2wJsWck_N3U8FI32zkbfn6ZiP1vJE17MX9id4F3a4guQZrANxk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Küken, Anika</creator><creator>Eloundou-Mbebi, Jeanne M O</creator><creator>Basler, Georg</creator><creator>Nikoloski, Zoran</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1367-0719</orcidid><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0002-0313-6400</orcidid></search><sort><creationdate>20190101</creationdate><title>Cellular determinants of metabolite concentration ranges</title><author>Küken, Anika ; Eloundou-Mbebi, Jeanne M O ; Basler, Georg ; Nikoloski, Zoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cellular communication</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Determinants</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Growth rate</topic><topic>Kinetics</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome - genetics</topic><topic>Models, Biological</topic><topic>Ordinary differential equations</topic><topic>Organisms</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Systems Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küken, Anika</creatorcontrib><creatorcontrib>Eloundou-Mbebi, Jeanne M O</creatorcontrib><creatorcontrib>Basler, Georg</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küken, Anika</au><au>Eloundou-Mbebi, Jeanne M O</au><au>Basler, Georg</au><au>Nikoloski, Zoran</au><au>Maranas, Costas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular determinants of metabolite concentration ranges</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>e1006687</spage><epage>e1006687</epage><pages>e1006687-e1006687</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30677015</pmid><doi>10.1371/journal.pcbi.1006687</doi><orcidid>https://orcid.org/0000-0003-1367-0719</orcidid><orcidid>https://orcid.org/0000-0003-2671-6763</orcidid><orcidid>https://orcid.org/0000-0002-0313-6400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-01, Vol.15 (1), p.e1006687-e1006687
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250635599
source Publicly Available Content Database; PubMed Central
subjects Bacteria
Biochemistry
Bioinformatics
Biology
Biology and Life Sciences
Cellular communication
Computer and Information Sciences
Computer simulation
Determinants
E coli
Enzymes
Escherichia coli
Escherichia coli - genetics
Genomes
Genomics
Growth rate
Kinetics
Medicine and Health Sciences
Metabolic networks
Metabolic Networks and Pathways - genetics
Metabolism
Metabolites
Metabolome - genetics
Models, Biological
Ordinary differential equations
Organisms
Physical Sciences
Physiological aspects
Physiology
Systems Biology - methods
title Cellular determinants of metabolite concentration ranges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20determinants%20of%20metabolite%20concentration%20ranges&rft.jtitle=PLoS%20computational%20biology&rft.au=K%C3%BCken,%20Anika&rft.date=2019-01-01&rft.volume=15&rft.issue=1&rft.spage=e1006687&rft.epage=e1006687&rft.pages=e1006687-e1006687&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006687&rft_dat=%3Cgale_plos_%3EA571883987%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-53eb636df12384fe48848d0d31049b037a46f97959a62cf37ded5680ac6be4813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250635599&rft_id=info:pmid/30677015&rft_galeid=A571883987&rfr_iscdi=true