Loading…

Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth

Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand th...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2019-05, Vol.15 (5), p.e1006877-e1006877
Main Authors: Yadaw, Arjun Singh, Siddiq, Mustafa M, Rabinovich, Vera, Tolentino, Rosa, Hansen, Jens, Iyengar, Ravi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-cb4e82cced497a8da6aac2cd13cc509eb78d828857ebfcb2e95106b40bace1223
cites cdi_FETCH-LOGICAL-c633t-cb4e82cced497a8da6aac2cd13cc509eb78d828857ebfcb2e95106b40bace1223
container_end_page e1006877
container_issue 5
container_start_page e1006877
container_title PLoS computational biology
container_volume 15
creator Yadaw, Arjun Singh
Siddiq, Mustafa M
Rabinovich, Vera
Tolentino, Rosa
Hansen, Jens
Iyengar, Ravi
description Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs. We hypothesized that dystrophic bulb formation is due to quantitative imbalances between SCPs. Simulations predict redundancies between lower level sibling SCPs within each type of high level SCP. In contrast, higher level SCPs, such as vesicle transport and exocytosis or microtubule growth characteristic of each type need to be strictly coordinated with each other and imbalances result in stalling of neurite outgrowth. From these simulations, we predicted the effect of changing the activities of SCPs involved in vesicle exocytosis or microtubule growth could lead to formation of dystrophic bulbs. siRNA ablation experiments verified these predictions. We conclude that whole cell dynamics requires balance between the higher-level SCPs involved and imbalances can terminate whole cell responses such as neurite outgrowth.
doi_str_mv 10.1371/journal.pcbi.1006877
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2250647342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A587702393</galeid><doaj_id>oai_doaj_org_article_f7cb39b8a9df4150bd520838f0b8845c</doaj_id><sourcerecordid>A587702393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-cb4e82cced497a8da6aac2cd13cc509eb78d828857ebfcb2e95106b40bace1223</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBEYgOLGfyIY2eDVJXXSBVIPDZsLNu5ST3K2IPttPTf45C06iA2KItYvt899j0-RfEUozWmHL_e-jE4Naz3Rts1RqgWnN8rjjFjdMUpE_fvrI-KRzFuEcrLpn5YHFGMKsIROS5-vL12amdNqdWgnIFSQ7oCcOUlRGsGKFNQLu59SKVybZnJ4NOox1zpg79KFyU4pQeIpYMx2ASlH9NceVw86NQQ4cnyPym-v3_37ezj6vzzh83Z6fnK1JSmldEVCGIMtFXDlWhVrZQhpsXUGIYa0Fy0ggjBOOjOaAINw6jWFdLKACaEnhTPZ9394KNcbImSEIbqitNqIjYz0Xq1lftgdypcS6-s_LPhQy9VSNO4suNG00YL1bRdhRnSLSNIUNEhLUTFTNZ6s5w26h20Blx2aDgQPaw4eyF7fylrVtWE4SzwchEI_ucIMcmdjQaGbD_4cbo3blB-Kk4z-uIv9N_TrWeqV3kA6zqfzzX5ayE_l3fQ2bx_ynI-EKHNJPvqoCEzCX6lXo0xys3XL__Bfjpkq5nNGYkxQHfrCkZyyuzN9eWUWblkNrc9u-vobdNNSOlvLf7qnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250647342</pqid></control><display><type>article</type><title>Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Yadaw, Arjun Singh ; Siddiq, Mustafa M ; Rabinovich, Vera ; Tolentino, Rosa ; Hansen, Jens ; Iyengar, Ravi</creator><contributor>Maini, Philip K.</contributor><creatorcontrib>Yadaw, Arjun Singh ; Siddiq, Mustafa M ; Rabinovich, Vera ; Tolentino, Rosa ; Hansen, Jens ; Iyengar, Ravi ; Maini, Philip K.</creatorcontrib><description>Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs. We hypothesized that dystrophic bulb formation is due to quantitative imbalances between SCPs. Simulations predict redundancies between lower level sibling SCPs within each type of high level SCP. In contrast, higher level SCPs, such as vesicle transport and exocytosis or microtubule growth characteristic of each type need to be strictly coordinated with each other and imbalances result in stalling of neurite outgrowth. From these simulations, we predicted the effect of changing the activities of SCPs involved in vesicle exocytosis or microtubule growth could lead to formation of dystrophic bulbs. siRNA ablation experiments verified these predictions. We conclude that whole cell dynamics requires balance between the higher-level SCPs involved and imbalances can terminate whole cell responses such as neurite outgrowth.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006877</identifier><identifier>PMID: 31042702</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Animals ; Axonogenesis ; Biological Transport - physiology ; Biology ; Biology and Life Sciences ; Brain ; Bulbs ; Cell culture ; Cell Physiological Phenomena ; Cells, Cultured ; Computer simulation ; Exocytosis ; Growth models ; Mathematical models ; Medicine ; Microtubules ; Microtubules - metabolism ; Microtubules - physiology ; Models, Neurological ; Neural circuitry ; Neurites - metabolism ; Neurites - physiology ; Neuronal Outgrowth - physiology ; Neurons ; Neurons - physiology ; Neurosciences ; Ordinary differential equations ; Physiological aspects ; Predictions ; Protein Binding ; Rats ; siRNA ; Stalling ; Transport</subject><ispartof>PLoS computational biology, 2019-05, Vol.15 (5), p.e1006877-e1006877</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Yadaw et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Yadaw et al 2019 Yadaw et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-cb4e82cced497a8da6aac2cd13cc509eb78d828857ebfcb2e95106b40bace1223</citedby><cites>FETCH-LOGICAL-c633t-cb4e82cced497a8da6aac2cd13cc509eb78d828857ebfcb2e95106b40bace1223</cites><orcidid>0000-0002-7814-0180 ; 0000-0002-1362-6534 ; 0000-0002-8597-7376 ; 0000-0002-4261-3230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250647342/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250647342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31042702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maini, Philip K.</contributor><creatorcontrib>Yadaw, Arjun Singh</creatorcontrib><creatorcontrib>Siddiq, Mustafa M</creatorcontrib><creatorcontrib>Rabinovich, Vera</creatorcontrib><creatorcontrib>Tolentino, Rosa</creatorcontrib><creatorcontrib>Hansen, Jens</creatorcontrib><creatorcontrib>Iyengar, Ravi</creatorcontrib><title>Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs. We hypothesized that dystrophic bulb formation is due to quantitative imbalances between SCPs. Simulations predict redundancies between lower level sibling SCPs within each type of high level SCP. In contrast, higher level SCPs, such as vesicle transport and exocytosis or microtubule growth characteristic of each type need to be strictly coordinated with each other and imbalances result in stalling of neurite outgrowth. From these simulations, we predicted the effect of changing the activities of SCPs involved in vesicle exocytosis or microtubule growth could lead to formation of dystrophic bulbs. siRNA ablation experiments verified these predictions. We conclude that whole cell dynamics requires balance between the higher-level SCPs involved and imbalances can terminate whole cell responses such as neurite outgrowth.</description><subject>Ablation</subject><subject>Animals</subject><subject>Axonogenesis</subject><subject>Biological Transport - physiology</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Bulbs</subject><subject>Cell culture</subject><subject>Cell Physiological Phenomena</subject><subject>Cells, Cultured</subject><subject>Computer simulation</subject><subject>Exocytosis</subject><subject>Growth models</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Microtubules - physiology</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neurites - metabolism</subject><subject>Neurites - physiology</subject><subject>Neuronal Outgrowth - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Ordinary differential equations</subject><subject>Physiological aspects</subject><subject>Predictions</subject><subject>Protein Binding</subject><subject>Rats</subject><subject>siRNA</subject><subject>Stalling</subject><subject>Transport</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBEYgOLGfyIY2eDVJXXSBVIPDZsLNu5ST3K2IPttPTf45C06iA2KItYvt899j0-RfEUozWmHL_e-jE4Naz3Rts1RqgWnN8rjjFjdMUpE_fvrI-KRzFuEcrLpn5YHFGMKsIROS5-vL12amdNqdWgnIFSQ7oCcOUlRGsGKFNQLu59SKVybZnJ4NOox1zpg79KFyU4pQeIpYMx2ASlH9NceVw86NQQ4cnyPym-v3_37ezj6vzzh83Z6fnK1JSmldEVCGIMtFXDlWhVrZQhpsXUGIYa0Fy0ggjBOOjOaAINw6jWFdLKACaEnhTPZ9394KNcbImSEIbqitNqIjYz0Xq1lftgdypcS6-s_LPhQy9VSNO4suNG00YL1bRdhRnSLSNIUNEhLUTFTNZ6s5w26h20Blx2aDgQPaw4eyF7fylrVtWE4SzwchEI_ucIMcmdjQaGbD_4cbo3blB-Kk4z-uIv9N_TrWeqV3kA6zqfzzX5ayE_l3fQ2bx_ynI-EKHNJPvqoCEzCX6lXo0xys3XL__Bfjpkq5nNGYkxQHfrCkZyyuzN9eWUWblkNrc9u-vobdNNSOlvLf7qnw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Yadaw, Arjun Singh</creator><creator>Siddiq, Mustafa M</creator><creator>Rabinovich, Vera</creator><creator>Tolentino, Rosa</creator><creator>Hansen, Jens</creator><creator>Iyengar, Ravi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7814-0180</orcidid><orcidid>https://orcid.org/0000-0002-1362-6534</orcidid><orcidid>https://orcid.org/0000-0002-8597-7376</orcidid><orcidid>https://orcid.org/0000-0002-4261-3230</orcidid></search><sort><creationdate>201905</creationdate><title>Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth</title><author>Yadaw, Arjun Singh ; Siddiq, Mustafa M ; Rabinovich, Vera ; Tolentino, Rosa ; Hansen, Jens ; Iyengar, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-cb4e82cced497a8da6aac2cd13cc509eb78d828857ebfcb2e95106b40bace1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Axonogenesis</topic><topic>Biological Transport - physiology</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Bulbs</topic><topic>Cell culture</topic><topic>Cell Physiological Phenomena</topic><topic>Cells, Cultured</topic><topic>Computer simulation</topic><topic>Exocytosis</topic><topic>Growth models</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Microtubules - physiology</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neurites - metabolism</topic><topic>Neurites - physiology</topic><topic>Neuronal Outgrowth - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Ordinary differential equations</topic><topic>Physiological aspects</topic><topic>Predictions</topic><topic>Protein Binding</topic><topic>Rats</topic><topic>siRNA</topic><topic>Stalling</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadaw, Arjun Singh</creatorcontrib><creatorcontrib>Siddiq, Mustafa M</creatorcontrib><creatorcontrib>Rabinovich, Vera</creatorcontrib><creatorcontrib>Tolentino, Rosa</creatorcontrib><creatorcontrib>Hansen, Jens</creatorcontrib><creatorcontrib>Iyengar, Ravi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadaw, Arjun Singh</au><au>Siddiq, Mustafa M</au><au>Rabinovich, Vera</au><au>Tolentino, Rosa</au><au>Hansen, Jens</au><au>Iyengar, Ravi</au><au>Maini, Philip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-05</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>e1006877</spage><epage>e1006877</epage><pages>e1006877-e1006877</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs. We hypothesized that dystrophic bulb formation is due to quantitative imbalances between SCPs. Simulations predict redundancies between lower level sibling SCPs within each type of high level SCP. In contrast, higher level SCPs, such as vesicle transport and exocytosis or microtubule growth characteristic of each type need to be strictly coordinated with each other and imbalances result in stalling of neurite outgrowth. From these simulations, we predicted the effect of changing the activities of SCPs involved in vesicle exocytosis or microtubule growth could lead to formation of dystrophic bulbs. siRNA ablation experiments verified these predictions. We conclude that whole cell dynamics requires balance between the higher-level SCPs involved and imbalances can terminate whole cell responses such as neurite outgrowth.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31042702</pmid><doi>10.1371/journal.pcbi.1006877</doi><orcidid>https://orcid.org/0000-0002-7814-0180</orcidid><orcidid>https://orcid.org/0000-0002-1362-6534</orcidid><orcidid>https://orcid.org/0000-0002-8597-7376</orcidid><orcidid>https://orcid.org/0000-0002-4261-3230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-05, Vol.15 (5), p.e1006877-e1006877
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2250647342
source Access via ProQuest (Open Access); PubMed Central
subjects Ablation
Animals
Axonogenesis
Biological Transport - physiology
Biology
Biology and Life Sciences
Brain
Bulbs
Cell culture
Cell Physiological Phenomena
Cells, Cultured
Computer simulation
Exocytosis
Growth models
Mathematical models
Medicine
Microtubules
Microtubules - metabolism
Microtubules - physiology
Models, Neurological
Neural circuitry
Neurites - metabolism
Neurites - physiology
Neuronal Outgrowth - physiology
Neurons
Neurons - physiology
Neurosciences
Ordinary differential equations
Physiological aspects
Predictions
Protein Binding
Rats
siRNA
Stalling
Transport
title Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20balance%20between%20vesicle%20transport%20and%20microtubule%20growth%20enables%20neurite%20outgrowth&rft.jtitle=PLoS%20computational%20biology&rft.au=Yadaw,%20Arjun%20Singh&rft.date=2019-05&rft.volume=15&rft.issue=5&rft.spage=e1006877&rft.epage=e1006877&rft.pages=e1006877-e1006877&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006877&rft_dat=%3Cgale_plos_%3EA587702393%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-cb4e82cced497a8da6aac2cd13cc509eb78d828857ebfcb2e95106b40bace1223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250647342&rft_id=info:pmid/31042702&rft_galeid=A587702393&rfr_iscdi=true