Loading…

Fast and flexible linear mixed models for genome-wide genetics

Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced po...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2019-02, Vol.15 (2), p.e1007978-e1007978
Main Authors: Runcie, Daniel E, Crawford, Lorin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83
cites cdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83
container_end_page e1007978
container_issue 2
container_start_page e1007978
container_title PLoS genetics
container_volume 15
creator Runcie, Daniel E
Crawford, Lorin
description Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.
doi_str_mv 10.1371/journal.pgen.1007978
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251042702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A576572640</galeid><doaj_id>oai_doaj_org_article_04ad80ac2ada459d8876168ee1db880d</doaj_id><sourcerecordid>A576572640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</originalsourceid><addsrcrecordid>eNqVk1uL1DAUx4so7kW_gWhBEH2YMWmSJnlZWBZXBxYXvL2GNDmdyZA2s02rs9_ejNNdprIPSh4STn7nf26cLHuB0RwTjt-vw9C12s83S2jnGCEuuXiUHWPGyIxTRB8fvI-ykxjXCBEmJH-aHRHECaOiPM7OLnXsc93avPawdZWH3LsWdJc3bgs2b4IFH_M6dHmKExqY_XIWdm_onYnPsie19hGej_dp9v3yw7eLT7Or64-Li_OrmeFF2c8qqrUQSFTa1mUhkSkxoRQoFbwmxkiDZYkNSFHUhJWEU1lxw6WRpUVaV4KcZq_2uhsfohpLj6ooGEa04KhIxGJP2KDXatO5Rne3Kmin_hhCt1S6Syl7UIhqK5A2hbaaMmmF4CUuBQC2VcrSJq2zMdpQNWANtH2n_UR0-tO6lVqGn6okgkgqk8DbUaALNwPEXjUuGvBetxCGlDcWjDGBCU7o67_Qh6sbqaVOBbi2Dimu2Ymqc8ZLlrpMUaLmD1DpWGicCS3ULtknDu8mDonpYdsv9RCjWnz98h_s539nr39M2TcH7Aq071cx-KF3oY1TkO5B04UYO6jvB4KR2q3EXefUbiXUuBLJ7eXhMO-d7naA_AaqYwPN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251042702</pqid></control><display><type>article</type><title>Fast and flexible linear mixed models for genome-wide genetics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Runcie, Daniel E ; Crawford, Lorin</creator><contributor>Epstein, Michael P.</contributor><creatorcontrib>Runcie, Daniel E ; Crawford, Lorin ; Epstein, Michael P.</creatorcontrib><description>Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007978</identifier><identifier>PMID: 30735486</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Bayes Theorem ; Bayesian analysis ; Biological complexity ; Biology and Life Sciences ; Body Weight - genetics ; Computer Simulation ; DNA methylation ; Economic models ; Estimates ; Flowers - genetics ; Flowers - growth &amp; development ; Gene expression ; Gene-Environment Interaction ; Generalized linear models ; Genetic analysis ; Genetic aspects ; Genetic diversity ; Genetic Markers ; Genetic research ; Genetic Variation ; Genome-wide association studies ; Genome-Wide Association Study - statistics &amp; numerical data ; Genomes ; Genotype-environment interactions ; Genotypes ; Humans ; Independent sample ; Linear Models ; Mathematical models ; Methods ; Mice ; Models, Genetic ; Physical Sciences ; Population structure ; Quantitative genetics ; Quantitative Trait Loci ; Research and Analysis Methods ; Software ; Spatial heterogeneity</subject><ispartof>PLoS genetics, 2019-02, Vol.15 (2), p.e1007978-e1007978</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Runcie, Crawford. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Runcie, Crawford 2019 Runcie, Crawford</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</citedby><cites>FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</cites><orcidid>0000-0002-3008-9312 ; 0000-0003-0178-8242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2251042702/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2251042702?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30735486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Epstein, Michael P.</contributor><creatorcontrib>Runcie, Daniel E</creatorcontrib><creatorcontrib>Crawford, Lorin</creatorcontrib><title>Fast and flexible linear mixed models for genome-wide genetics</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biological complexity</subject><subject>Biology and Life Sciences</subject><subject>Body Weight - genetics</subject><subject>Computer Simulation</subject><subject>DNA methylation</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Gene expression</subject><subject>Gene-Environment Interaction</subject><subject>Generalized linear models</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Markers</subject><subject>Genetic research</subject><subject>Genetic Variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - statistics &amp; numerical data</subject><subject>Genomes</subject><subject>Genotype-environment interactions</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Independent sample</subject><subject>Linear Models</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Physical Sciences</subject><subject>Population structure</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Spatial heterogeneity</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUx4so7kW_gWhBEH2YMWmSJnlZWBZXBxYXvL2GNDmdyZA2s02rs9_ejNNdprIPSh4STn7nf26cLHuB0RwTjt-vw9C12s83S2jnGCEuuXiUHWPGyIxTRB8fvI-ykxjXCBEmJH-aHRHECaOiPM7OLnXsc93avPawdZWH3LsWdJc3bgs2b4IFH_M6dHmKExqY_XIWdm_onYnPsie19hGej_dp9v3yw7eLT7Or64-Li_OrmeFF2c8qqrUQSFTa1mUhkSkxoRQoFbwmxkiDZYkNSFHUhJWEU1lxw6WRpUVaV4KcZq_2uhsfohpLj6ooGEa04KhIxGJP2KDXatO5Rne3Kmin_hhCt1S6Syl7UIhqK5A2hbaaMmmF4CUuBQC2VcrSJq2zMdpQNWANtH2n_UR0-tO6lVqGn6okgkgqk8DbUaALNwPEXjUuGvBetxCGlDcWjDGBCU7o67_Qh6sbqaVOBbi2Dimu2Ymqc8ZLlrpMUaLmD1DpWGicCS3ULtknDu8mDonpYdsv9RCjWnz98h_s539nr39M2TcH7Aq071cx-KF3oY1TkO5B04UYO6jvB4KR2q3EXefUbiXUuBLJ7eXhMO-d7naA_AaqYwPN</recordid><startdate>20190208</startdate><enddate>20190208</enddate><creator>Runcie, Daniel E</creator><creator>Crawford, Lorin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3008-9312</orcidid><orcidid>https://orcid.org/0000-0003-0178-8242</orcidid></search><sort><creationdate>20190208</creationdate><title>Fast and flexible linear mixed models for genome-wide genetics</title><author>Runcie, Daniel E ; Crawford, Lorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biological complexity</topic><topic>Biology and Life Sciences</topic><topic>Body Weight - genetics</topic><topic>Computer Simulation</topic><topic>DNA methylation</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Gene expression</topic><topic>Gene-Environment Interaction</topic><topic>Generalized linear models</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Markers</topic><topic>Genetic research</topic><topic>Genetic Variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - statistics &amp; numerical data</topic><topic>Genomes</topic><topic>Genotype-environment interactions</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Independent sample</topic><topic>Linear Models</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Physical Sciences</topic><topic>Population structure</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Spatial heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runcie, Daniel E</creatorcontrib><creatorcontrib>Crawford, Lorin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runcie, Daniel E</au><au>Crawford, Lorin</au><au>Epstein, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and flexible linear mixed models for genome-wide genetics</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-02-08</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>e1007978</spage><epage>e1007978</epage><pages>e1007978-e1007978</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30735486</pmid><doi>10.1371/journal.pgen.1007978</doi><orcidid>https://orcid.org/0000-0002-3008-9312</orcidid><orcidid>https://orcid.org/0000-0003-0178-8242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2019-02, Vol.15 (2), p.e1007978-e1007978
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2251042702
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Animals
Arabidopsis - genetics
Arabidopsis - growth & development
Bayes Theorem
Bayesian analysis
Biological complexity
Biology and Life Sciences
Body Weight - genetics
Computer Simulation
DNA methylation
Economic models
Estimates
Flowers - genetics
Flowers - growth & development
Gene expression
Gene-Environment Interaction
Generalized linear models
Genetic analysis
Genetic aspects
Genetic diversity
Genetic Markers
Genetic research
Genetic Variation
Genome-wide association studies
Genome-Wide Association Study - statistics & numerical data
Genomes
Genotype-environment interactions
Genotypes
Humans
Independent sample
Linear Models
Mathematical models
Methods
Mice
Models, Genetic
Physical Sciences
Population structure
Quantitative genetics
Quantitative Trait Loci
Research and Analysis Methods
Software
Spatial heterogeneity
title Fast and flexible linear mixed models for genome-wide genetics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20flexible%20linear%20mixed%20models%20for%20genome-wide%20genetics&rft.jtitle=PLoS%20genetics&rft.au=Runcie,%20Daniel%20E&rft.date=2019-02-08&rft.volume=15&rft.issue=2&rft.spage=e1007978&rft.epage=e1007978&rft.pages=e1007978-e1007978&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007978&rft_dat=%3Cgale_plos_%3EA576572640%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2251042702&rft_id=info:pmid/30735486&rft_galeid=A576572640&rfr_iscdi=true