Loading…
Fast and flexible linear mixed models for genome-wide genetics
Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced po...
Saved in:
Published in: | PLoS genetics 2019-02, Vol.15 (2), p.e1007978-e1007978 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83 |
---|---|
cites | cdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83 |
container_end_page | e1007978 |
container_issue | 2 |
container_start_page | e1007978 |
container_title | PLoS genetics |
container_volume | 15 |
creator | Runcie, Daniel E Crawford, Lorin |
description | Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries. |
doi_str_mv | 10.1371/journal.pgen.1007978 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251042702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A576572640</galeid><doaj_id>oai_doaj_org_article_04ad80ac2ada459d8876168ee1db880d</doaj_id><sourcerecordid>A576572640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</originalsourceid><addsrcrecordid>eNqVk1uL1DAUx4so7kW_gWhBEH2YMWmSJnlZWBZXBxYXvL2GNDmdyZA2s02rs9_ejNNdprIPSh4STn7nf26cLHuB0RwTjt-vw9C12s83S2jnGCEuuXiUHWPGyIxTRB8fvI-ykxjXCBEmJH-aHRHECaOiPM7OLnXsc93avPawdZWH3LsWdJc3bgs2b4IFH_M6dHmKExqY_XIWdm_onYnPsie19hGej_dp9v3yw7eLT7Or64-Li_OrmeFF2c8qqrUQSFTa1mUhkSkxoRQoFbwmxkiDZYkNSFHUhJWEU1lxw6WRpUVaV4KcZq_2uhsfohpLj6ooGEa04KhIxGJP2KDXatO5Rne3Kmin_hhCt1S6Syl7UIhqK5A2hbaaMmmF4CUuBQC2VcrSJq2zMdpQNWANtH2n_UR0-tO6lVqGn6okgkgqk8DbUaALNwPEXjUuGvBetxCGlDcWjDGBCU7o67_Qh6sbqaVOBbi2Dimu2Ymqc8ZLlrpMUaLmD1DpWGicCS3ULtknDu8mDonpYdsv9RCjWnz98h_s539nr39M2TcH7Aq071cx-KF3oY1TkO5B04UYO6jvB4KR2q3EXefUbiXUuBLJ7eXhMO-d7naA_AaqYwPN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251042702</pqid></control><display><type>article</type><title>Fast and flexible linear mixed models for genome-wide genetics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Runcie, Daniel E ; Crawford, Lorin</creator><contributor>Epstein, Michael P.</contributor><creatorcontrib>Runcie, Daniel E ; Crawford, Lorin ; Epstein, Michael P.</creatorcontrib><description>Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007978</identifier><identifier>PMID: 30735486</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Bayes Theorem ; Bayesian analysis ; Biological complexity ; Biology and Life Sciences ; Body Weight - genetics ; Computer Simulation ; DNA methylation ; Economic models ; Estimates ; Flowers - genetics ; Flowers - growth & development ; Gene expression ; Gene-Environment Interaction ; Generalized linear models ; Genetic analysis ; Genetic aspects ; Genetic diversity ; Genetic Markers ; Genetic research ; Genetic Variation ; Genome-wide association studies ; Genome-Wide Association Study - statistics & numerical data ; Genomes ; Genotype-environment interactions ; Genotypes ; Humans ; Independent sample ; Linear Models ; Mathematical models ; Methods ; Mice ; Models, Genetic ; Physical Sciences ; Population structure ; Quantitative genetics ; Quantitative Trait Loci ; Research and Analysis Methods ; Software ; Spatial heterogeneity</subject><ispartof>PLoS genetics, 2019-02, Vol.15 (2), p.e1007978-e1007978</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Runcie, Crawford. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Runcie, Crawford 2019 Runcie, Crawford</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</citedby><cites>FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</cites><orcidid>0000-0002-3008-9312 ; 0000-0003-0178-8242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2251042702/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2251042702?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30735486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Epstein, Michael P.</contributor><creatorcontrib>Runcie, Daniel E</creatorcontrib><creatorcontrib>Crawford, Lorin</creatorcontrib><title>Fast and flexible linear mixed models for genome-wide genetics</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biological complexity</subject><subject>Biology and Life Sciences</subject><subject>Body Weight - genetics</subject><subject>Computer Simulation</subject><subject>DNA methylation</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Gene expression</subject><subject>Gene-Environment Interaction</subject><subject>Generalized linear models</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Markers</subject><subject>Genetic research</subject><subject>Genetic Variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - statistics & numerical data</subject><subject>Genomes</subject><subject>Genotype-environment interactions</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Independent sample</subject><subject>Linear Models</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Physical Sciences</subject><subject>Population structure</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Spatial heterogeneity</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUx4so7kW_gWhBEH2YMWmSJnlZWBZXBxYXvL2GNDmdyZA2s02rs9_ejNNdprIPSh4STn7nf26cLHuB0RwTjt-vw9C12s83S2jnGCEuuXiUHWPGyIxTRB8fvI-ykxjXCBEmJH-aHRHECaOiPM7OLnXsc93avPawdZWH3LsWdJc3bgs2b4IFH_M6dHmKExqY_XIWdm_onYnPsie19hGej_dp9v3yw7eLT7Or64-Li_OrmeFF2c8qqrUQSFTa1mUhkSkxoRQoFbwmxkiDZYkNSFHUhJWEU1lxw6WRpUVaV4KcZq_2uhsfohpLj6ooGEa04KhIxGJP2KDXatO5Rne3Kmin_hhCt1S6Syl7UIhqK5A2hbaaMmmF4CUuBQC2VcrSJq2zMdpQNWANtH2n_UR0-tO6lVqGn6okgkgqk8DbUaALNwPEXjUuGvBetxCGlDcWjDGBCU7o67_Qh6sbqaVOBbi2Dimu2Ymqc8ZLlrpMUaLmD1DpWGicCS3ULtknDu8mDonpYdsv9RCjWnz98h_s539nr39M2TcH7Aq071cx-KF3oY1TkO5B04UYO6jvB4KR2q3EXefUbiXUuBLJ7eXhMO-d7naA_AaqYwPN</recordid><startdate>20190208</startdate><enddate>20190208</enddate><creator>Runcie, Daniel E</creator><creator>Crawford, Lorin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3008-9312</orcidid><orcidid>https://orcid.org/0000-0003-0178-8242</orcidid></search><sort><creationdate>20190208</creationdate><title>Fast and flexible linear mixed models for genome-wide genetics</title><author>Runcie, Daniel E ; Crawford, Lorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biological complexity</topic><topic>Biology and Life Sciences</topic><topic>Body Weight - genetics</topic><topic>Computer Simulation</topic><topic>DNA methylation</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Gene expression</topic><topic>Gene-Environment Interaction</topic><topic>Generalized linear models</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Markers</topic><topic>Genetic research</topic><topic>Genetic Variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - statistics & numerical data</topic><topic>Genomes</topic><topic>Genotype-environment interactions</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Independent sample</topic><topic>Linear Models</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Physical Sciences</topic><topic>Population structure</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Spatial heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runcie, Daniel E</creatorcontrib><creatorcontrib>Crawford, Lorin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runcie, Daniel E</au><au>Crawford, Lorin</au><au>Epstein, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and flexible linear mixed models for genome-wide genetics</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-02-08</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>e1007978</spage><epage>e1007978</epage><pages>e1007978-e1007978</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30735486</pmid><doi>10.1371/journal.pgen.1007978</doi><orcidid>https://orcid.org/0000-0002-3008-9312</orcidid><orcidid>https://orcid.org/0000-0003-0178-8242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2019-02, Vol.15 (2), p.e1007978-e1007978 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2251042702 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Animals Arabidopsis - genetics Arabidopsis - growth & development Bayes Theorem Bayesian analysis Biological complexity Biology and Life Sciences Body Weight - genetics Computer Simulation DNA methylation Economic models Estimates Flowers - genetics Flowers - growth & development Gene expression Gene-Environment Interaction Generalized linear models Genetic analysis Genetic aspects Genetic diversity Genetic Markers Genetic research Genetic Variation Genome-wide association studies Genome-Wide Association Study - statistics & numerical data Genomes Genotype-environment interactions Genotypes Humans Independent sample Linear Models Mathematical models Methods Mice Models, Genetic Physical Sciences Population structure Quantitative genetics Quantitative Trait Loci Research and Analysis Methods Software Spatial heterogeneity |
title | Fast and flexible linear mixed models for genome-wide genetics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20flexible%20linear%20mixed%20models%20for%20genome-wide%20genetics&rft.jtitle=PLoS%20genetics&rft.au=Runcie,%20Daniel%20E&rft.date=2019-02-08&rft.volume=15&rft.issue=2&rft.spage=e1007978&rft.epage=e1007978&rft.pages=e1007978-e1007978&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007978&rft_dat=%3Cgale_plos_%3EA576572640%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-b4aa8808badf6290c61344e4487f3cc9c1961ce982f3563749b7c79c96d0aab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2251042702&rft_id=info:pmid/30735486&rft_galeid=A576572640&rfr_iscdi=true |