Loading…
Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins
Salmonella enterica serotype Typhimurium (S. Typhimurium) is one of the most frequent causes of food-borne illness in humans and usually associated with acute self-limiting gastroenteritis. However, in immunocompromised patients, the pathogen can disseminate and lead to severe systemic diseases. S....
Saved in:
Published in: | PLoS pathogens 2018-08, Vol.14 (8), p.e1007248-e1007248 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Salmonella enterica serotype Typhimurium (S. Typhimurium) is one of the most frequent causes of food-borne illness in humans and usually associated with acute self-limiting gastroenteritis. However, in immunocompromised patients, the pathogen can disseminate and lead to severe systemic diseases. S. Typhimurium are facultative intracellular bacteria. For uptake and intracellular life, Salmonella translocate numerous effector proteins into host cells using two type-III secretion systems (T3SS), which are encoded within Salmonella pathogenicity islands 1 (SPI-1) and 2 (SPI-2). While SPI-1 effectors mainly promote initial invasion, SPI-2 effectors control intracellular survival and proliferation. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI, which is involved in control of systemic dissemination of S. Typhimurium. SseI deamidates a specific glutamine residue of heterotrimeric G proteins of the Gαi family, resulting in persistent activation of the G protein. Gi activation inhibits cAMP production and stimulates PI3-kinase γ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, SseI-induced deamidation leads to non-polarized activation of Gαi and, thereby, to loss of directed migration of dendritic cells. |
---|---|
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1007248 |