Loading…

Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups

Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-07, Vol.14 (7), p.e0219576-e0219576
Main Authors: Skorski, Matthew, Bamunusinghe, Devinka, Liu, Qingping, Shaffer, Esther, Kozak, Christine A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-3e90b3cf4aac16d1309dae49e65f8a4ef04e3d693903c371f46a899a3ceeb3043
cites cdi_FETCH-LOGICAL-c692t-3e90b3cf4aac16d1309dae49e65f8a4ef04e3d693903c371f46a899a3ceeb3043
container_end_page e0219576
container_issue 7
container_start_page e0219576
container_title PloS one
container_volume 14
creator Skorski, Matthew
Bamunusinghe, Devinka
Liu, Qingping
Shaffer, Esther
Kozak, Christine A
description Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5-96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.
doi_str_mv 10.1371/journal.pone.0219576
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2256215287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592865336</galeid><doaj_id>oai_doaj_org_article_cb391c6f00b84a929adc6b415fa8ac39</doaj_id><sourcerecordid>A592865336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3e90b3cf4aac16d1309dae49e65f8a4ef04e3d693903c371f46a899a3ceeb3043</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPloM82NsKyuDiws-HUbTtPTToY2GZN2cP_A_m4zM91lKnshLTSkz3nSvM1JkpeUzClf0A9rN3gL7XzjLM4JozJfiEfJKZWczQQj_PHR-CR5FsKakJwXQjxNTjhlMkqy0-T2kwm9N-XQG2dTV6doK9egdUNIG-g68Nh7tzV-CBhSsFW6BW_A9mEH9ytML7c09biT6L0jFmNqbLwrszXVAG3aRRumEQFjD5LDOA1D2Xg3bMLz5EkNbcAX4_Ms-Xn5-cfF19nV9ZflxfnVTAvJ-hlHSUqu6wxAU1FRTmQFmEkUeV1AhjXJkFdCckm4jiHVmYBCSuAaseQk42fJ64N307qgxgiDYiwXjOasWERieSAqB2u18SZGcKMcGLWfcL5R4HujW1S65JJqURNSFhlIJqHSosxoXkMBmsvo-jiuNpQdVhpt3HY7kU7fWLNSjdsqIagsOImCd6PAu99DDFl1JmhsW7AYM91_NyV5QYqIvvkHfXh3I9VA3ICxtYvr6p1UneeSFSLnXERq_gAVrwo7o-N5q02cnxS8nxREpsc_fQNDCGr5_dv_s9e_puzbI3aF0Par4Nr9YQ1TMDuA2rsQPNb3IVOidu1yl4batYsa2yWWvTr-QfdFd_3B_wIZ3RNP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256215287</pqid></control><display><type>article</type><title>Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Skorski, Matthew ; Bamunusinghe, Devinka ; Liu, Qingping ; Shaffer, Esther ; Kozak, Christine A</creator><contributor>Schindler, Michael</contributor><creatorcontrib>Skorski, Matthew ; Bamunusinghe, Devinka ; Liu, Qingping ; Shaffer, Esther ; Kozak, Christine A ; Schindler, Michael</creatorcontrib><description>Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5-96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0219576</identifier><identifier>PMID: 31291374</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Animals ; Biology and Life Sciences ; Carcinogenesis - genetics ; Composition ; Datasets as Topic ; DNA ; Endogenous retroviruses ; Endogenous Retroviruses - genetics ; Endogenous Retroviruses - isolation &amp; purification ; Genes ; Genetic aspects ; Genetic variation ; Genomes ; Genomics ; Heredity ; Host-virus relationships ; House mouse ; Identification and classification ; Inbreeding ; Incidence ; Infectious diseases ; Laboratories ; Leukemia ; Leukemia Virus, Murine - genetics ; Leukemia Virus, Murine - isolation &amp; purification ; Lymphoma - genetics ; Lymphoma - veterinary ; Lymphoma - virology ; Medicine and Health Sciences ; Methods ; Mice ; Mice, Inbred Strains - genetics ; Mice, Inbred Strains - virology ; Mouse leukemia viruses ; Proteins - genetics ; Proviruses ; Recombinants ; Research and Analysis Methods ; Retroviruses ; Rodents ; Strains (organisms) ; Subgroups ; Tumors ; Viruses ; Xenotropic</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0219576-e0219576</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3e90b3cf4aac16d1309dae49e65f8a4ef04e3d693903c371f46a899a3ceeb3043</citedby><cites>FETCH-LOGICAL-c692t-3e90b3cf4aac16d1309dae49e65f8a4ef04e3d693903c371f46a899a3ceeb3043</cites><orcidid>0000-0001-5863-6915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2256215287/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2256215287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31291374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schindler, Michael</contributor><creatorcontrib>Skorski, Matthew</creatorcontrib><creatorcontrib>Bamunusinghe, Devinka</creatorcontrib><creatorcontrib>Liu, Qingping</creatorcontrib><creatorcontrib>Shaffer, Esther</creatorcontrib><creatorcontrib>Kozak, Christine A</creatorcontrib><title>Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5-96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Carcinogenesis - genetics</subject><subject>Composition</subject><subject>Datasets as Topic</subject><subject>DNA</subject><subject>Endogenous retroviruses</subject><subject>Endogenous Retroviruses - genetics</subject><subject>Endogenous Retroviruses - isolation &amp; purification</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic variation</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Heredity</subject><subject>Host-virus relationships</subject><subject>House mouse</subject><subject>Identification and classification</subject><subject>Inbreeding</subject><subject>Incidence</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Leukemia</subject><subject>Leukemia Virus, Murine - genetics</subject><subject>Leukemia Virus, Murine - isolation &amp; purification</subject><subject>Lymphoma - genetics</subject><subject>Lymphoma - veterinary</subject><subject>Lymphoma - virology</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred Strains - genetics</subject><subject>Mice, Inbred Strains - virology</subject><subject>Mouse leukemia viruses</subject><subject>Proteins - genetics</subject><subject>Proviruses</subject><subject>Recombinants</subject><subject>Research and Analysis Methods</subject><subject>Retroviruses</subject><subject>Rodents</subject><subject>Strains (organisms)</subject><subject>Subgroups</subject><subject>Tumors</subject><subject>Viruses</subject><subject>Xenotropic</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPloM82NsKyuDiws-HUbTtPTToY2GZN2cP_A_m4zM91lKnshLTSkz3nSvM1JkpeUzClf0A9rN3gL7XzjLM4JozJfiEfJKZWczQQj_PHR-CR5FsKakJwXQjxNTjhlMkqy0-T2kwm9N-XQG2dTV6doK9egdUNIG-g68Nh7tzV-CBhSsFW6BW_A9mEH9ytML7c09biT6L0jFmNqbLwrszXVAG3aRRumEQFjD5LDOA1D2Xg3bMLz5EkNbcAX4_Ms-Xn5-cfF19nV9ZflxfnVTAvJ-hlHSUqu6wxAU1FRTmQFmEkUeV1AhjXJkFdCckm4jiHVmYBCSuAaseQk42fJ64N307qgxgiDYiwXjOasWERieSAqB2u18SZGcKMcGLWfcL5R4HujW1S65JJqURNSFhlIJqHSosxoXkMBmsvo-jiuNpQdVhpt3HY7kU7fWLNSjdsqIagsOImCd6PAu99DDFl1JmhsW7AYM91_NyV5QYqIvvkHfXh3I9VA3ICxtYvr6p1UneeSFSLnXERq_gAVrwo7o-N5q02cnxS8nxREpsc_fQNDCGr5_dv_s9e_puzbI3aF0Par4Nr9YQ1TMDuA2rsQPNb3IVOidu1yl4batYsa2yWWvTr-QfdFd_3B_wIZ3RNP</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Skorski, Matthew</creator><creator>Bamunusinghe, Devinka</creator><creator>Liu, Qingping</creator><creator>Shaffer, Esther</creator><creator>Kozak, Christine A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5863-6915</orcidid></search><sort><creationdate>20190710</creationdate><title>Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups</title><author>Skorski, Matthew ; Bamunusinghe, Devinka ; Liu, Qingping ; Shaffer, Esther ; Kozak, Christine A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3e90b3cf4aac16d1309dae49e65f8a4ef04e3d693903c371f46a899a3ceeb3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Carcinogenesis - genetics</topic><topic>Composition</topic><topic>Datasets as Topic</topic><topic>DNA</topic><topic>Endogenous retroviruses</topic><topic>Endogenous Retroviruses - genetics</topic><topic>Endogenous Retroviruses - isolation &amp; purification</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic variation</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Heredity</topic><topic>Host-virus relationships</topic><topic>House mouse</topic><topic>Identification and classification</topic><topic>Inbreeding</topic><topic>Incidence</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Leukemia</topic><topic>Leukemia Virus, Murine - genetics</topic><topic>Leukemia Virus, Murine - isolation &amp; purification</topic><topic>Lymphoma - genetics</topic><topic>Lymphoma - veterinary</topic><topic>Lymphoma - virology</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred Strains - genetics</topic><topic>Mice, Inbred Strains - virology</topic><topic>Mouse leukemia viruses</topic><topic>Proteins - genetics</topic><topic>Proviruses</topic><topic>Recombinants</topic><topic>Research and Analysis Methods</topic><topic>Retroviruses</topic><topic>Rodents</topic><topic>Strains (organisms)</topic><topic>Subgroups</topic><topic>Tumors</topic><topic>Viruses</topic><topic>Xenotropic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skorski, Matthew</creatorcontrib><creatorcontrib>Bamunusinghe, Devinka</creatorcontrib><creatorcontrib>Liu, Qingping</creatorcontrib><creatorcontrib>Shaffer, Esther</creatorcontrib><creatorcontrib>Kozak, Christine A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skorski, Matthew</au><au>Bamunusinghe, Devinka</au><au>Liu, Qingping</au><au>Shaffer, Esther</au><au>Kozak, Christine A</au><au>Schindler, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-10</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0219576</spage><epage>e0219576</epage><pages>e0219576-e0219576</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5-96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31291374</pmid><doi>10.1371/journal.pone.0219576</doi><tpages>e0219576</tpages><orcidid>https://orcid.org/0000-0001-5863-6915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-07, Vol.14 (7), p.e0219576-e0219576
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2256215287
source Publicly Available Content Database; PubMed Central
subjects Alleles
Animals
Biology and Life Sciences
Carcinogenesis - genetics
Composition
Datasets as Topic
DNA
Endogenous retroviruses
Endogenous Retroviruses - genetics
Endogenous Retroviruses - isolation & purification
Genes
Genetic aspects
Genetic variation
Genomes
Genomics
Heredity
Host-virus relationships
House mouse
Identification and classification
Inbreeding
Incidence
Infectious diseases
Laboratories
Leukemia
Leukemia Virus, Murine - genetics
Leukemia Virus, Murine - isolation & purification
Lymphoma - genetics
Lymphoma - veterinary
Lymphoma - virology
Medicine and Health Sciences
Methods
Mice
Mice, Inbred Strains - genetics
Mice, Inbred Strains - virology
Mouse leukemia viruses
Proteins - genetics
Proviruses
Recombinants
Research and Analysis Methods
Retroviruses
Rodents
Strains (organisms)
Subgroups
Tumors
Viruses
Xenotropic
title Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20endogenous%20gammaretroviruses%20and%20variants%20of%20the%20Fv1%20restriction%20gene%20in%20individual%20mouse%20strains%20and%20strain%20subgroups&rft.jtitle=PloS%20one&rft.au=Skorski,%20Matthew&rft.date=2019-07-10&rft.volume=14&rft.issue=7&rft.spage=e0219576&rft.epage=e0219576&rft.pages=e0219576-e0219576&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0219576&rft_dat=%3Cgale_plos_%3EA592865336%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-3e90b3cf4aac16d1309dae49e65f8a4ef04e3d693903c371f46a899a3ceeb3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2256215287&rft_id=info:pmid/31291374&rft_galeid=A592865336&rfr_iscdi=true