Loading…

Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis

Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be...

Full description

Saved in:
Bibliographic Details
Published in:PLoS neglected tropical diseases 2019-06, Vol.13 (6), p.e0007382
Main Authors: S L Figueiredo de Sá, Bruna, Rezende, Antonio M, Melo Neto, Osvaldo P de, Brito, Maria Edileuza F de, Brandão Filho, Sinval P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be more adequately defined. Here we used whole genome sequences to evaluate the genetic diversity of ten L. braziliensis isolates from a CL endemic area from Northeastern Brazil, previously classified by Multi Locus Enzyme Electrophoresis (MLEE) into ten distinct zymodemes. These sequences were first mapped using the L. braziliensis M2904 reference genome followed by identification of Single Nucleotide Polymorphisms (SNPs). A substantial level of diversity was observed when compared with the reference genome, with SNP counts ranging from ~95,000 to ~131,000 for the different isolates. When the genome data was used to infer relationship between isolates, those belonging to zymodemes Z72/Z75, recovered from forested environments, were found to cluster separately from the others, generally associated with more urban environments. Among the remaining isolates, those from zymodemes Z74/Z106 were also found to form a separate group. Phylogenetic analyses were also performed using Multi-Locus Sequence Analysis from genes coding for four metabolic enzymes used for MLEE as well as the gene sequence coding for the Hsp70 heat shock protein. All 10 isolates were firmly identified as L. braziliensis, including the zymodeme Z26 isolate previously classified as Leishmania shawi, with the clustering into three groups confirmed. Aneuploidy was also investigated but found in general restricted to chromosome 31, with a single isolate, from zymodeme Z27, characterized by extra copies for other chromosomes. Noteworthy, both Z72 and Z75 isolates are characterized by a much reduced heterozygosity. Our data is consistent with the existence of distinct evolutionary groups in the restricted area sampled and a substantial genetic diversity within L. braziliensis.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0007382