Loading…

Intracortical neural activity distal to seizure-onset-areas predicts human focal seizures

The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded f...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-07, Vol.14 (7), p.e0211847-e0211847
Main Authors: Proix, Timothée, Aghagolzadeh, Mehdi, Madsen, Joseph R, Cosgrove, Rees, Eskandar, Emad, Hochberg, Leigh R, Cash, Sydney S, Truccolo, Wilson
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded from small neocortical patches away from identified seizure onset areas. We show that machine learning algorithms can discriminate between interictal and preictal periods based on multiunit activity (i.e. thresholded action potential counts) and multi-frequency band local field potentials recorded via 4 X 4 mm2 microelectrode arrays. Microelectrode arrays were implanted in 5 patients undergoing neuromonitoring for resective surgery. Post-implant analysis revealed arrays were outside the seizure onset areas. Preictal periods were defined as the 1-hour period leading to a seizure. A 5-minute gap between the preictal period and the putative seizure onset was enforced to account for potential errors in the determination of actual seizure onset times. We used extreme gradient boosting and long short-term memory networks for prediction. Prediction accuracy based on the area under the receiver operating characteristic curves reached 90% for at least one feature type in each patient. Importantly, successful prediction could be achieved based exclusively on multiunit activity. This result indicates that preictal activity in the recorded neocortical patches involved not only subthreshold postsynaptic potentials, perhaps driven by the distal seizure onset areas, but also neuronal spiking in distal recurrent neocortical networks. Beyond the commonly identified seizure onset areas, our findings point to the engagement of large-scale neuronal networks in the neural dynamics building up toward a seizure. Our initial results obtained on currently available human intracortical microelectrode array recordings warrant new studies on larger datasets, and open new perspectives for seizure prediction and control by emphasizing the contribution of multiscale neural signals in large-scale neuronal networks.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0211847