Loading…
Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration
For many disease conditions, tissue samples are colored with multiple dyes and stains to add contrast and location information for specific proteins to accurately identify and diagnose disease. This presents a computational challenge for digital pathology, as whole-slide images (WSIs) need to be pro...
Saved in:
Published in: | PloS one 2019-07, Vol.14 (7), p.e0220074-e0220074 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-dfb88031e5bcc5bf1efb2b8f87d9f379166693b134ae775f1fc465284bf0e3e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-dfb88031e5bcc5bf1efb2b8f87d9f379166693b134ae775f1fc465284bf0e3e23 |
container_end_page | e0220074 |
container_issue | 7 |
container_start_page | e0220074 |
container_title | PloS one |
container_volume | 14 |
creator | Jiang, Jun Larson, Nicholas B Prodduturi, Naresh Flotte, Thomas J Hart, Steven N |
description | For many disease conditions, tissue samples are colored with multiple dyes and stains to add contrast and location information for specific proteins to accurately identify and diagnose disease. This presents a computational challenge for digital pathology, as whole-slide images (WSIs) need to be properly overlaid (i.e. registered) to identify co-localized features. Traditional image registration methods sometimes fail due to the high variation of cell density and insufficient texture information in WSIs-particularly at high magnifications. In this paper, we proposed a robust image registration strategy to align re-stained WSIs precisely and efficiently. This method is applied to 30 pairs of immunohistochemical (IHC) stains and their hematoxylin and eosin (H&E) counterparts. Our approach advances the existing methods in three key ways. First, we introduce refinements to existing image registration methods. Second, we present an effective weighting strategy using kernel density estimation to mitigate registration errors. Third, we account for the linear relationship across WSI levels to improve accuracy. Our experiments show significant decreases in registration errors when matching IHC and H&E pairs, enabling subcellular-level analysis on stained and re-stained histological images. We also provide a tool to allow users to develop their own registration benchmarking experiments. |
doi_str_mv | 10.1371/journal.pone.0220074 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2263616638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594395389</galeid><doaj_id>oai_doaj_org_article_a1a6339338454e8b834b079604524dc6</doaj_id><sourcerecordid>A594395389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dfb88031e5bcc5bf1efb2b8f87d9f379166693b134ae775f1fc465284bf0e3e23</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggiISG4yGLHhyQ3SFXFYaVKlcrh1nKcceKVN97aCdC3x9lNqw3qBcpFYuf7f8-MZ5LkJUYrTAr8YeNG30u72rkeVijPESroo-QUVyTPeI7I46Pvk-RZCBuEGCk5f5qcEExIVVFymoRrV49hSDsDXnrVGSVt2kAfzHCbQhjMVg7G9ansm9RD6yGEaamdj8ssDNL00ER1GJx17V79u3MW0mBNA2mUt5Aql0VtZPze7HnyREsb4MX8Pkt-fP70_eJrdnn1ZX1xfpkpXuVD1ui6LBHBwGqlWK0x6DqvS10WTaVJUWHOeUVqTKiEomAaa0U5y0taawQEcnKWvD747qwLYq5XEHnOCY9iUkZifSAaJzdi52O4_lY4acR-w_lWSD8YZUFILHksGiElZRTKuiS0RkXFEWU5bRSPXh_n08Z6C42CPqZrF6bLP73pROt-Cc4ZK0oWDd7NBt7djLH2YmuCAmtlD27cx02n2NmEvvkHfTi7mWplTMD02sVz1WQqzlm8_Sq2QxWp1QNUfBrYGhWbS5u4vxC8XwgiM8CfoZVjCGL97fr_2aufS_btEduBtEMXnB2nlglLkB5A5V0IHvR9kTES02zcVUNMsyHm2YiyV8cXdC-6GwbyF3HXCwI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263616638</pqid></control><display><type>article</type><title>Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration</title><source>Publicly Available Content Database</source><source>PubMed</source><creator>Jiang, Jun ; Larson, Nicholas B ; Prodduturi, Naresh ; Flotte, Thomas J ; Hart, Steven N</creator><contributor>Sarder, Pinaki</contributor><creatorcontrib>Jiang, Jun ; Larson, Nicholas B ; Prodduturi, Naresh ; Flotte, Thomas J ; Hart, Steven N ; Sarder, Pinaki</creatorcontrib><description>For many disease conditions, tissue samples are colored with multiple dyes and stains to add contrast and location information for specific proteins to accurately identify and diagnose disease. This presents a computational challenge for digital pathology, as whole-slide images (WSIs) need to be properly overlaid (i.e. registered) to identify co-localized features. Traditional image registration methods sometimes fail due to the high variation of cell density and insufficient texture information in WSIs-particularly at high magnifications. In this paper, we proposed a robust image registration strategy to align re-stained WSIs precisely and efficiently. This method is applied to 30 pairs of immunohistochemical (IHC) stains and their hematoxylin and eosin (H&E) counterparts. Our approach advances the existing methods in three key ways. First, we introduce refinements to existing image registration methods. Second, we present an effective weighting strategy using kernel density estimation to mitigate registration errors. Third, we account for the linear relationship across WSI levels to improve accuracy. Our experiments show significant decreases in registration errors when matching IHC and H&E pairs, enabling subcellular-level analysis on stained and re-stained histological images. We also provide a tool to allow users to develop their own registration benchmarking experiments.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0220074</identifier><identifier>PMID: 31339943</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Benchmarking ; Biology and Life Sciences ; Cell density ; Computer applications ; Density ; Digital imaging ; EDTA ; Eosin ; Fluoresceins ; Fluorescent Antibody Technique - methods ; Hematoxylin ; Histology ; Identification methods ; Image Processing, Computer-Assisted - methods ; Image registration ; Immunohistochemistry ; Medical imaging ; Medicine and Health Sciences ; Methods ; Pathology ; Physical Sciences ; Proteins ; Registration ; Regression analysis ; Research and Analysis Methods ; Robustness (mathematics) ; Staining and Labeling - methods ; Stains & staining</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0220074-e0220074</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Jiang et al 2019 Jiang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dfb88031e5bcc5bf1efb2b8f87d9f379166693b134ae775f1fc465284bf0e3e23</citedby><cites>FETCH-LOGICAL-c692t-dfb88031e5bcc5bf1efb2b8f87d9f379166693b134ae775f1fc465284bf0e3e23</cites><orcidid>0000-0003-1147-3666 ; 0000-0001-7714-2734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2263616638/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2263616638?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31339943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sarder, Pinaki</contributor><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Larson, Nicholas B</creatorcontrib><creatorcontrib>Prodduturi, Naresh</creatorcontrib><creatorcontrib>Flotte, Thomas J</creatorcontrib><creatorcontrib>Hart, Steven N</creatorcontrib><title>Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>For many disease conditions, tissue samples are colored with multiple dyes and stains to add contrast and location information for specific proteins to accurately identify and diagnose disease. This presents a computational challenge for digital pathology, as whole-slide images (WSIs) need to be properly overlaid (i.e. registered) to identify co-localized features. Traditional image registration methods sometimes fail due to the high variation of cell density and insufficient texture information in WSIs-particularly at high magnifications. In this paper, we proposed a robust image registration strategy to align re-stained WSIs precisely and efficiently. This method is applied to 30 pairs of immunohistochemical (IHC) stains and their hematoxylin and eosin (H&E) counterparts. Our approach advances the existing methods in three key ways. First, we introduce refinements to existing image registration methods. Second, we present an effective weighting strategy using kernel density estimation to mitigate registration errors. Third, we account for the linear relationship across WSI levels to improve accuracy. Our experiments show significant decreases in registration errors when matching IHC and H&E pairs, enabling subcellular-level analysis on stained and re-stained histological images. We also provide a tool to allow users to develop their own registration benchmarking experiments.</description><subject>Analysis</subject><subject>Benchmarking</subject><subject>Biology and Life Sciences</subject><subject>Cell density</subject><subject>Computer applications</subject><subject>Density</subject><subject>Digital imaging</subject><subject>EDTA</subject><subject>Eosin</subject><subject>Fluoresceins</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>Hematoxylin</subject><subject>Histology</subject><subject>Identification methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image registration</subject><subject>Immunohistochemistry</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Pathology</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Registration</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Staining and Labeling - methods</subject><subject>Stains & staining</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggiISG4yGLHhyQ3SFXFYaVKlcrh1nKcceKVN97aCdC3x9lNqw3qBcpFYuf7f8-MZ5LkJUYrTAr8YeNG30u72rkeVijPESroo-QUVyTPeI7I46Pvk-RZCBuEGCk5f5qcEExIVVFymoRrV49hSDsDXnrVGSVt2kAfzHCbQhjMVg7G9ansm9RD6yGEaamdj8ssDNL00ER1GJx17V79u3MW0mBNA2mUt5Aql0VtZPze7HnyREsb4MX8Pkt-fP70_eJrdnn1ZX1xfpkpXuVD1ui6LBHBwGqlWK0x6DqvS10WTaVJUWHOeUVqTKiEomAaa0U5y0taawQEcnKWvD747qwLYq5XEHnOCY9iUkZifSAaJzdi52O4_lY4acR-w_lWSD8YZUFILHksGiElZRTKuiS0RkXFEWU5bRSPXh_n08Z6C42CPqZrF6bLP73pROt-Cc4ZK0oWDd7NBt7djLH2YmuCAmtlD27cx02n2NmEvvkHfTi7mWplTMD02sVz1WQqzlm8_Sq2QxWp1QNUfBrYGhWbS5u4vxC8XwgiM8CfoZVjCGL97fr_2aufS_btEduBtEMXnB2nlglLkB5A5V0IHvR9kTES02zcVUNMsyHm2YiyV8cXdC-6GwbyF3HXCwI</recordid><startdate>20190724</startdate><enddate>20190724</enddate><creator>Jiang, Jun</creator><creator>Larson, Nicholas B</creator><creator>Prodduturi, Naresh</creator><creator>Flotte, Thomas J</creator><creator>Hart, Steven N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1147-3666</orcidid><orcidid>https://orcid.org/0000-0001-7714-2734</orcidid></search><sort><creationdate>20190724</creationdate><title>Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration</title><author>Jiang, Jun ; Larson, Nicholas B ; Prodduturi, Naresh ; Flotte, Thomas J ; Hart, Steven N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dfb88031e5bcc5bf1efb2b8f87d9f379166693b134ae775f1fc465284bf0e3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Benchmarking</topic><topic>Biology and Life Sciences</topic><topic>Cell density</topic><topic>Computer applications</topic><topic>Density</topic><topic>Digital imaging</topic><topic>EDTA</topic><topic>Eosin</topic><topic>Fluoresceins</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>Hematoxylin</topic><topic>Histology</topic><topic>Identification methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image registration</topic><topic>Immunohistochemistry</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Pathology</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Registration</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Staining and Labeling - methods</topic><topic>Stains & staining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Larson, Nicholas B</creatorcontrib><creatorcontrib>Prodduturi, Naresh</creatorcontrib><creatorcontrib>Flotte, Thomas J</creatorcontrib><creatorcontrib>Hart, Steven N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jun</au><au>Larson, Nicholas B</au><au>Prodduturi, Naresh</au><au>Flotte, Thomas J</au><au>Hart, Steven N</au><au>Sarder, Pinaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-24</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0220074</spage><epage>e0220074</epage><pages>e0220074-e0220074</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>For many disease conditions, tissue samples are colored with multiple dyes and stains to add contrast and location information for specific proteins to accurately identify and diagnose disease. This presents a computational challenge for digital pathology, as whole-slide images (WSIs) need to be properly overlaid (i.e. registered) to identify co-localized features. Traditional image registration methods sometimes fail due to the high variation of cell density and insufficient texture information in WSIs-particularly at high magnifications. In this paper, we proposed a robust image registration strategy to align re-stained WSIs precisely and efficiently. This method is applied to 30 pairs of immunohistochemical (IHC) stains and their hematoxylin and eosin (H&E) counterparts. Our approach advances the existing methods in three key ways. First, we introduce refinements to existing image registration methods. Second, we present an effective weighting strategy using kernel density estimation to mitigate registration errors. Third, we account for the linear relationship across WSI levels to improve accuracy. Our experiments show significant decreases in registration errors when matching IHC and H&E pairs, enabling subcellular-level analysis on stained and re-stained histological images. We also provide a tool to allow users to develop their own registration benchmarking experiments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31339943</pmid><doi>10.1371/journal.pone.0220074</doi><orcidid>https://orcid.org/0000-0003-1147-3666</orcidid><orcidid>https://orcid.org/0000-0001-7714-2734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-07, Vol.14 (7), p.e0220074-e0220074 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2263616638 |
source | Publicly Available Content Database; PubMed |
subjects | Analysis Benchmarking Biology and Life Sciences Cell density Computer applications Density Digital imaging EDTA Eosin Fluoresceins Fluorescent Antibody Technique - methods Hematoxylin Histology Identification methods Image Processing, Computer-Assisted - methods Image registration Immunohistochemistry Medical imaging Medicine and Health Sciences Methods Pathology Physical Sciences Proteins Registration Regression analysis Research and Analysis Methods Robustness (mathematics) Staining and Labeling - methods Stains & staining |
title | Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20hierarchical%20density%20estimation%20and%20regression%20for%20re-stained%20histological%20whole%20slide%20image%20co-registration&rft.jtitle=PloS%20one&rft.au=Jiang,%20Jun&rft.date=2019-07-24&rft.volume=14&rft.issue=7&rft.spage=e0220074&rft.epage=e0220074&rft.pages=e0220074-e0220074&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0220074&rft_dat=%3Cgale_plos_%3EA594395389%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-dfb88031e5bcc5bf1efb2b8f87d9f379166693b134ae775f1fc465284bf0e3e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2263616638&rft_id=info:pmid/31339943&rft_galeid=A594395389&rfr_iscdi=true |