Loading…

Trapping of two-component light bullets in a gradient waveguide with normal group dispersion

In this paper we consider the process of the second harmonic generation in a gradient waveguide, taking into account diffraction and relatively weak temporal dispersion. Using the slowly varying envelope approximation and neglecting the dispersion of the nonlinear part of the response of the medium...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-08, Vol.14 (8), p.e0220840-e0220840
Main Authors: Kalinovich, Aleksey A, Komissarova, Maria V, Sazonov, Sergey V, Zakharova, Irina G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-e74aa21624fec5e2990af0060f27f4b558d64a0a93dac86cec82c1e6979843573
cites cdi_FETCH-LOGICAL-c692t-e74aa21624fec5e2990af0060f27f4b558d64a0a93dac86cec82c1e6979843573
container_end_page e0220840
container_issue 8
container_start_page e0220840
container_title PloS one
container_volume 14
creator Kalinovich, Aleksey A
Komissarova, Maria V
Sazonov, Sergey V
Zakharova, Irina G
description In this paper we consider the process of the second harmonic generation in a gradient waveguide, taking into account diffraction and relatively weak temporal dispersion. Using the slowly varying envelope approximation and neglecting the dispersion of the nonlinear part of the response of the medium we obtain the system of parabolic equations for the envelopes of both harmonics. We also derive integrals of motion of this system. To solve it numerically we construct a nonlinear finite-difference scheme based on the Crank-Nicolson method preserving the integrals. Primarily, we focus our investigations on the processes of a two-component light bullets generation. We demonstrate that the generation of a coupled pair is possible in a planar waveguide even at normal group velocity dispersion.
doi_str_mv 10.1371/journal.pone.0220840
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2273745027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596525761</galeid><doaj_id>oai_doaj_org_article_cdcf7e03308744f38ec1cebd42807d97</doaj_id><sourcerecordid>A596525761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e74aa21624fec5e2990af0060f27f4b558d64a0a93dac86cec82c1e6979843573</originalsourceid><addsrcrecordid>eNqNk1trFDEUxwdRbK1-A9EBQfRh19xn5kUoxctCoaDVJyFkM2dmU7KTaZLp6rc3052WHemD5CEh53f-JzmXLHuJ0RLTAn-4coPvlF32roMlIgSVDD3KjnFFyUIQRB8fnI-yZyFcIcRpKcTT7IhihrlA7Dj7delV35uuzV2Tx51baLcdFbuYW9NuYr4erIUYctPlKm-9qs1o26kbaAdTQ74zcZN3zm-VTWY39HltQg8-GNc9z540ygZ4Me0n2Y_Pny7Pvi7OL76szk7PF1pUJC6gYEoRLAhrQHMgVYVUg5BADSkatua8rAVTSFW0VroUGnRJNAZRFVXJKC_oSfZ6r9tbF-SUmCAJKWjBOCIjsdoTtVNXsvdmq_wf6ZSRtxfOt1L5aLQFqWvdFIAoRWXBWENL0FjDumakREVdjVofp2jDegu1Tvnwys5E55bObGTrbqQQFce0SgLvJgHvrgcIUW5N0GCt6sANt-_mhIm0EvrmH_Th301Uq9IHTNe4FFePovKUV4ITXgicqOUDVFo1bI1ONW9Mup85vJ85JCbC79iqIQS5-v7t_9mLn3P27QG7AWXjJjg7xNQyYQ6yPai9C8FDc59kjOQ4BHfZkGPLymkIkturwwLdO911Pf0L3rACHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273745027</pqid></control><display><type>article</type><title>Trapping of two-component light bullets in a gradient waveguide with normal group dispersion</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kalinovich, Aleksey A ; Komissarova, Maria V ; Sazonov, Sergey V ; Zakharova, Irina G</creator><contributor>Massignan, Pietro</contributor><creatorcontrib>Kalinovich, Aleksey A ; Komissarova, Maria V ; Sazonov, Sergey V ; Zakharova, Irina G ; Massignan, Pietro</creatorcontrib><description>In this paper we consider the process of the second harmonic generation in a gradient waveguide, taking into account diffraction and relatively weak temporal dispersion. Using the slowly varying envelope approximation and neglecting the dispersion of the nonlinear part of the response of the medium we obtain the system of parabolic equations for the envelopes of both harmonics. We also derive integrals of motion of this system. To solve it numerically we construct a nonlinear finite-difference scheme based on the Crank-Nicolson method preserving the integrals. Primarily, we focus our investigations on the processes of a two-component light bullets generation. We demonstrate that the generation of a coupled pair is possible in a planar waveguide even at normal group velocity dispersion.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0220840</identifier><identifier>PMID: 31415604</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Applied mathematics ; Biology and Life Sciences ; Computational mathematics ; Computer and Information Sciences ; Computer Simulation ; Dispersion ; Finite difference method ; Group velocity ; Integrals ; Light ; Medicine and Health Sciences ; Models, Theoretical ; Nonlinear response ; Numerical Analysis, Computer-Assisted ; Optical properties ; Optics ; Physical Sciences ; Physics ; Planar waveguides ; Projectiles ; Propagation ; Research and Analysis Methods ; Scattering, Radiation ; Second harmonic generation ; Wave propagation ; Waveguides</subject><ispartof>PloS one, 2019-08, Vol.14 (8), p.e0220840-e0220840</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Kalinovich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Kalinovich et al 2019 Kalinovich et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e74aa21624fec5e2990af0060f27f4b558d64a0a93dac86cec82c1e6979843573</citedby><cites>FETCH-LOGICAL-c692t-e74aa21624fec5e2990af0060f27f4b558d64a0a93dac86cec82c1e6979843573</cites><orcidid>0000-0003-3398-298X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2273745027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2273745027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31415604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Massignan, Pietro</contributor><creatorcontrib>Kalinovich, Aleksey A</creatorcontrib><creatorcontrib>Komissarova, Maria V</creatorcontrib><creatorcontrib>Sazonov, Sergey V</creatorcontrib><creatorcontrib>Zakharova, Irina G</creatorcontrib><title>Trapping of two-component light bullets in a gradient waveguide with normal group dispersion</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper we consider the process of the second harmonic generation in a gradient waveguide, taking into account diffraction and relatively weak temporal dispersion. Using the slowly varying envelope approximation and neglecting the dispersion of the nonlinear part of the response of the medium we obtain the system of parabolic equations for the envelopes of both harmonics. We also derive integrals of motion of this system. To solve it numerically we construct a nonlinear finite-difference scheme based on the Crank-Nicolson method preserving the integrals. Primarily, we focus our investigations on the processes of a two-component light bullets generation. We demonstrate that the generation of a coupled pair is possible in a planar waveguide even at normal group velocity dispersion.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Applied mathematics</subject><subject>Biology and Life Sciences</subject><subject>Computational mathematics</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Dispersion</subject><subject>Finite difference method</subject><subject>Group velocity</subject><subject>Integrals</subject><subject>Light</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Nonlinear response</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Planar waveguides</subject><subject>Projectiles</subject><subject>Propagation</subject><subject>Research and Analysis Methods</subject><subject>Scattering, Radiation</subject><subject>Second harmonic generation</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1trFDEUxwdRbK1-A9EBQfRh19xn5kUoxctCoaDVJyFkM2dmU7KTaZLp6rc3052WHemD5CEh53f-JzmXLHuJ0RLTAn-4coPvlF32roMlIgSVDD3KjnFFyUIQRB8fnI-yZyFcIcRpKcTT7IhihrlA7Dj7delV35uuzV2Tx51baLcdFbuYW9NuYr4erIUYctPlKm-9qs1o26kbaAdTQ74zcZN3zm-VTWY39HltQg8-GNc9z540ygZ4Me0n2Y_Pny7Pvi7OL76szk7PF1pUJC6gYEoRLAhrQHMgVYVUg5BADSkatua8rAVTSFW0VroUGnRJNAZRFVXJKC_oSfZ6r9tbF-SUmCAJKWjBOCIjsdoTtVNXsvdmq_wf6ZSRtxfOt1L5aLQFqWvdFIAoRWXBWENL0FjDumakREVdjVofp2jDegu1Tvnwys5E55bObGTrbqQQFce0SgLvJgHvrgcIUW5N0GCt6sANt-_mhIm0EvrmH_Th301Uq9IHTNe4FFePovKUV4ITXgicqOUDVFo1bI1ONW9Mup85vJ85JCbC79iqIQS5-v7t_9mLn3P27QG7AWXjJjg7xNQyYQ6yPai9C8FDc59kjOQ4BHfZkGPLymkIkturwwLdO911Pf0L3rACHw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Kalinovich, Aleksey A</creator><creator>Komissarova, Maria V</creator><creator>Sazonov, Sergey V</creator><creator>Zakharova, Irina G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3398-298X</orcidid></search><sort><creationdate>20190815</creationdate><title>Trapping of two-component light bullets in a gradient waveguide with normal group dispersion</title><author>Kalinovich, Aleksey A ; Komissarova, Maria V ; Sazonov, Sergey V ; Zakharova, Irina G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e74aa21624fec5e2990af0060f27f4b558d64a0a93dac86cec82c1e6979843573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Applied mathematics</topic><topic>Biology and Life Sciences</topic><topic>Computational mathematics</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Dispersion</topic><topic>Finite difference method</topic><topic>Group velocity</topic><topic>Integrals</topic><topic>Light</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Nonlinear response</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Planar waveguides</topic><topic>Projectiles</topic><topic>Propagation</topic><topic>Research and Analysis Methods</topic><topic>Scattering, Radiation</topic><topic>Second harmonic generation</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalinovich, Aleksey A</creatorcontrib><creatorcontrib>Komissarova, Maria V</creatorcontrib><creatorcontrib>Sazonov, Sergey V</creatorcontrib><creatorcontrib>Zakharova, Irina G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalinovich, Aleksey A</au><au>Komissarova, Maria V</au><au>Sazonov, Sergey V</au><au>Zakharova, Irina G</au><au>Massignan, Pietro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapping of two-component light bullets in a gradient waveguide with normal group dispersion</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>14</volume><issue>8</issue><spage>e0220840</spage><epage>e0220840</epage><pages>e0220840-e0220840</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper we consider the process of the second harmonic generation in a gradient waveguide, taking into account diffraction and relatively weak temporal dispersion. Using the slowly varying envelope approximation and neglecting the dispersion of the nonlinear part of the response of the medium we obtain the system of parabolic equations for the envelopes of both harmonics. We also derive integrals of motion of this system. To solve it numerically we construct a nonlinear finite-difference scheme based on the Crank-Nicolson method preserving the integrals. Primarily, we focus our investigations on the processes of a two-component light bullets generation. We demonstrate that the generation of a coupled pair is possible in a planar waveguide even at normal group velocity dispersion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31415604</pmid><doi>10.1371/journal.pone.0220840</doi><tpages>e0220840</tpages><orcidid>https://orcid.org/0000-0003-3398-298X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-08, Vol.14 (8), p.e0220840-e0220840
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2273745027
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Analysis
Applied mathematics
Biology and Life Sciences
Computational mathematics
Computer and Information Sciences
Computer Simulation
Dispersion
Finite difference method
Group velocity
Integrals
Light
Medicine and Health Sciences
Models, Theoretical
Nonlinear response
Numerical Analysis, Computer-Assisted
Optical properties
Optics
Physical Sciences
Physics
Planar waveguides
Projectiles
Propagation
Research and Analysis Methods
Scattering, Radiation
Second harmonic generation
Wave propagation
Waveguides
title Trapping of two-component light bullets in a gradient waveguide with normal group dispersion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapping%20of%20two-component%20light%20bullets%20in%20a%20gradient%20waveguide%20with%20normal%20group%20dispersion&rft.jtitle=PloS%20one&rft.au=Kalinovich,%20Aleksey%20A&rft.date=2019-08-15&rft.volume=14&rft.issue=8&rft.spage=e0220840&rft.epage=e0220840&rft.pages=e0220840-e0220840&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0220840&rft_dat=%3Cgale_plos_%3EA596525761%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-e74aa21624fec5e2990af0060f27f4b558d64a0a93dac86cec82c1e6979843573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273745027&rft_id=info:pmid/31415604&rft_galeid=A596525761&rfr_iscdi=true