Loading…
A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth
Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Mos...
Saved in:
Published in: | PLoS computational biology 2019-07, Vol.15 (7), p.e1007213-e1007213 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c560t-b3ab7d3b59413c6db6ae6ee01dcd7f0bec1a6ebd610950435896f5c9b8a21dc53 |
---|---|
cites | cdi_FETCH-LOGICAL-c560t-b3ab7d3b59413c6db6ae6ee01dcd7f0bec1a6ebd610950435896f5c9b8a21dc53 |
container_end_page | e1007213 |
container_issue | 7 |
container_start_page | e1007213 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Rudraraju, Shiva Moulton, Derek E Chirat, Régis Goriely, Alain Garikipati, Krishna |
description | Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell's morphology. Connections are made to a range of complex shells ornamentations. |
doi_str_mv | 10.1371/journal.pcbi.1007213 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2274435733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d34e1a4ebcef4210aff5a495c174a394</doaj_id><sourcerecordid>2267012831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-b3ab7d3b59413c6db6ae6ee01dcd7f0bec1a6ebd610950435896f5c9b8a21dc53</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJCxx2seOPbC5IqwpopUpc4GyNnfEmWycOdrJV_z3e7rZqK04eed688Xt-RfGe0SXjFfu6DXMcwC9Ha7olo7QqGX9RnDIp-aLicvXyUX1SvElpS2kua_W6OOGMSyVrdlr0a2JDP84TTF3IdMRF6PEmxGviQiRTi6QPcWzDAj2kqbOkwR36MPY4TCS43PV-TtcwkNSi94mYW5Lm6MAigaEhu-DnHskmhpupfVu8cuATvjueZ8WfH99_n18srn79vDxfXy2sVHRaGA6mariRtWDcqsYoQIVIWWObylGDloFC0yhGa0nFnSonbW1WUGaM5GfFxwPv6EPSR6eSLstKZHTFeUZcHhBNgK0eY9dDvNUBOn13EeJGQ8xyPeqGC2Qg0Fh0omQUnJMgamlZJYDXInN9O26bTY-Nzc5E8E9In3aGrtWbsNNKrfKv0Uzw5UDQPhu7WF_p_R0VK8HrUu1Yxn4-Lovh74xp0n2XbHYeBgzzXqOqKCtXfA_99Az6fyfEAWVjSCmie3gBo3qftPspvU-aPiYtj314LPph6D5a_B-pgtOv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274435733</pqid></control><display><type>article</type><title>A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Rudraraju, Shiva ; Moulton, Derek E ; Chirat, Régis ; Goriely, Alain ; Garikipati, Krishna</creator><contributor>Nie, Qing</contributor><creatorcontrib>Rudraraju, Shiva ; Moulton, Derek E ; Chirat, Régis ; Goriely, Alain ; Garikipati, Krishna ; Nie, Qing</creatorcontrib><description>Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell's morphology. Connections are made to a range of complex shells ornamentations.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007213</identifier><identifier>PMID: 31356591</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accretion ; Algorithms ; Animal Shells - anatomy & histology ; Animal Shells - growth & development ; Animal Shells - physiology ; Animals ; Biology ; Biology and Life Sciences ; Biomechanical Phenomena ; Body Patterning - physiology ; Calcification ; Calcification, Physiologic ; Computational Biology ; Computer applications ; Computer Simulation ; Coupling ; Deformation ; Deposition ; Elastic limit ; Elasticity ; Engineering and Technology ; Evolution & development ; Exoskeleton ; Exoskeletons ; Finite Element Analysis ; Growth rate ; Imaging, Three-Dimensional ; Invertebrates ; Life Sciences ; Mantle ; Mathematical morphology ; Mathematics ; Mechanical engineering ; Mechanics ; Medicine and Health Sciences ; Minerals ; Models, Biological ; Mollusca - anatomy & histology ; Mollusca - growth & development ; Mollusca - physiology ; Mollusks ; Morphogenesis ; Morphology ; Physical Sciences ; Shells ; Spatio-Temporal Analysis ; Studies</subject><ispartof>PLoS computational biology, 2019-07, Vol.15 (7), p.e1007213-e1007213</ispartof><rights>2019 Rudraraju et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2019 Rudraraju et al 2019 Rudraraju et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-b3ab7d3b59413c6db6ae6ee01dcd7f0bec1a6ebd610950435896f5c9b8a21dc53</citedby><cites>FETCH-LOGICAL-c560t-b3ab7d3b59413c6db6ae6ee01dcd7f0bec1a6ebd610950435896f5c9b8a21dc53</cites><orcidid>0000-0002-8313-0198 ; 0000-0002-6436-8483 ; 0000-0001-6697-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2274435733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2274435733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31356591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04843926$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Nie, Qing</contributor><creatorcontrib>Rudraraju, Shiva</creatorcontrib><creatorcontrib>Moulton, Derek E</creatorcontrib><creatorcontrib>Chirat, Régis</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><creatorcontrib>Garikipati, Krishna</creatorcontrib><title>A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell's morphology. Connections are made to a range of complex shells ornamentations.</description><subject>Accretion</subject><subject>Algorithms</subject><subject>Animal Shells - anatomy & histology</subject><subject>Animal Shells - growth & development</subject><subject>Animal Shells - physiology</subject><subject>Animals</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Body Patterning - physiology</subject><subject>Calcification</subject><subject>Calcification, Physiologic</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Coupling</subject><subject>Deformation</subject><subject>Deposition</subject><subject>Elastic limit</subject><subject>Elasticity</subject><subject>Engineering and Technology</subject><subject>Evolution & development</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Finite Element Analysis</subject><subject>Growth rate</subject><subject>Imaging, Three-Dimensional</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Mantle</subject><subject>Mathematical morphology</subject><subject>Mathematics</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Medicine and Health Sciences</subject><subject>Minerals</subject><subject>Models, Biological</subject><subject>Mollusca - anatomy & histology</subject><subject>Mollusca - growth & development</subject><subject>Mollusca - physiology</subject><subject>Mollusks</subject><subject>Morphogenesis</subject><subject>Morphology</subject><subject>Physical Sciences</subject><subject>Shells</subject><subject>Spatio-Temporal Analysis</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJCxx2seOPbC5IqwpopUpc4GyNnfEmWycOdrJV_z3e7rZqK04eed688Xt-RfGe0SXjFfu6DXMcwC9Ha7olo7QqGX9RnDIp-aLicvXyUX1SvElpS2kua_W6OOGMSyVrdlr0a2JDP84TTF3IdMRF6PEmxGviQiRTi6QPcWzDAj2kqbOkwR36MPY4TCS43PV-TtcwkNSi94mYW5Lm6MAigaEhu-DnHskmhpupfVu8cuATvjueZ8WfH99_n18srn79vDxfXy2sVHRaGA6mariRtWDcqsYoQIVIWWObylGDloFC0yhGa0nFnSonbW1WUGaM5GfFxwPv6EPSR6eSLstKZHTFeUZcHhBNgK0eY9dDvNUBOn13EeJGQ8xyPeqGC2Qg0Fh0omQUnJMgamlZJYDXInN9O26bTY-Nzc5E8E9In3aGrtWbsNNKrfKv0Uzw5UDQPhu7WF_p_R0VK8HrUu1Yxn4-Lovh74xp0n2XbHYeBgzzXqOqKCtXfA_99Az6fyfEAWVjSCmie3gBo3qftPspvU-aPiYtj314LPph6D5a_B-pgtOv</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Rudraraju, Shiva</creator><creator>Moulton, Derek E</creator><creator>Chirat, Régis</creator><creator>Goriely, Alain</creator><creator>Garikipati, Krishna</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8313-0198</orcidid><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid><orcidid>https://orcid.org/0000-0001-6697-0067</orcidid></search><sort><creationdate>20190701</creationdate><title>A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth</title><author>Rudraraju, Shiva ; Moulton, Derek E ; Chirat, Régis ; Goriely, Alain ; Garikipati, Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-b3ab7d3b59413c6db6ae6ee01dcd7f0bec1a6ebd610950435896f5c9b8a21dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accretion</topic><topic>Algorithms</topic><topic>Animal Shells - anatomy & histology</topic><topic>Animal Shells - growth & development</topic><topic>Animal Shells - physiology</topic><topic>Animals</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Body Patterning - physiology</topic><topic>Calcification</topic><topic>Calcification, Physiologic</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Coupling</topic><topic>Deformation</topic><topic>Deposition</topic><topic>Elastic limit</topic><topic>Elasticity</topic><topic>Engineering and Technology</topic><topic>Evolution & development</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Finite Element Analysis</topic><topic>Growth rate</topic><topic>Imaging, Three-Dimensional</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Mantle</topic><topic>Mathematical morphology</topic><topic>Mathematics</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Medicine and Health Sciences</topic><topic>Minerals</topic><topic>Models, Biological</topic><topic>Mollusca - anatomy & histology</topic><topic>Mollusca - growth & development</topic><topic>Mollusca - physiology</topic><topic>Mollusks</topic><topic>Morphogenesis</topic><topic>Morphology</topic><topic>Physical Sciences</topic><topic>Shells</topic><topic>Spatio-Temporal Analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudraraju, Shiva</creatorcontrib><creatorcontrib>Moulton, Derek E</creatorcontrib><creatorcontrib>Chirat, Régis</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><creatorcontrib>Garikipati, Krishna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudraraju, Shiva</au><au>Moulton, Derek E</au><au>Chirat, Régis</au><au>Goriely, Alain</au><au>Garikipati, Krishna</au><au>Nie, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>e1007213</spage><epage>e1007213</epage><pages>e1007213-e1007213</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell's morphology. Connections are made to a range of complex shells ornamentations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31356591</pmid><doi>10.1371/journal.pcbi.1007213</doi><orcidid>https://orcid.org/0000-0002-8313-0198</orcidid><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid><orcidid>https://orcid.org/0000-0001-6697-0067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-07, Vol.15 (7), p.e1007213-e1007213 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2274435733 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Accretion Algorithms Animal Shells - anatomy & histology Animal Shells - growth & development Animal Shells - physiology Animals Biology Biology and Life Sciences Biomechanical Phenomena Body Patterning - physiology Calcification Calcification, Physiologic Computational Biology Computer applications Computer Simulation Coupling Deformation Deposition Elastic limit Elasticity Engineering and Technology Evolution & development Exoskeleton Exoskeletons Finite Element Analysis Growth rate Imaging, Three-Dimensional Invertebrates Life Sciences Mantle Mathematical morphology Mathematics Mechanical engineering Mechanics Medicine and Health Sciences Minerals Models, Biological Mollusca - anatomy & histology Mollusca - growth & development Mollusca - physiology Mollusks Morphogenesis Morphology Physical Sciences Shells Spatio-Temporal Analysis Studies |
title | A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20framework%20for%20the%20morpho-elastic%20development%20of%20molluskan%20shells%20by%20surface%20and%20volume%20growth&rft.jtitle=PLoS%20computational%20biology&rft.au=Rudraraju,%20Shiva&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=e1007213&rft.epage=e1007213&rft.pages=e1007213-e1007213&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007213&rft_dat=%3Cproquest_plos_%3E2267012831%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-b3ab7d3b59413c6db6ae6ee01dcd7f0bec1a6ebd610950435896f5c9b8a21dc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2274435733&rft_id=info:pmid/31356591&rfr_iscdi=true |