Loading…
From skylight input to behavioural output: A computational model of the insect polarised light compass
Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information c...
Saved in:
Published in: | PLoS computational biology 2019-07, Vol.15 (7), p.e1007123-e1007123 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53 |
container_end_page | e1007123 |
container_issue | 7 |
container_start_page | e1007123 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Gkanias, Evripidis Risse, Benjamin Mangan, Michael Webb, Barbara |
description | Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation. |
doi_str_mv | 10.1371/journal.pcbi.1007123 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2274436684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595183192</galeid><doaj_id>oai_doaj_org_article_989a65e6721847fab04096fe85b41eb3</doaj_id><sourcerecordid>A595183192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfb6czkgRRWFSBVIfJwt2ztOHHbX6dpb0X-PQ9KqQVzQHnY8ft53xqOpqucEzwmV5O0mTuNguvnW2TAnGEtS0wfVKeGcziTl6uG9-KR6ktIG4xI24nF1QgklSvHmtPIXY-xR-nnThdU6ozBsp4xyRBbW5jqUEqZDccol-w4tkIt9iUwOsVRGfWyh3HqU11CUCVxG29iZMSRo0d5wpzApPa0eedMleHb4n1U_Lj58P_80u_zycXm-uJw5QWmeWW4c1MZzaxXhjNeOGeulwrYFhw1uhMHMU-GwYFQpRhpWzoTUvpGtB07Pqpd7320Xkz6MKOm6loxRIRQrxHJPtNFs9HYMvRlvdDRB_0nEcaXNmIPrQDeqMYKDkDVRTHpjMSsdeFDcMgKWFq_3h2qT7aF1MOQyryPT45shrPUqXmshqJJy18zrg8EYryZIWfchOeg6M0Ccdn0LUotGSFzQV3-h_37dfE-tTHlAGHwsdV35WuiDiwP4UPIL3nCiKGnqInhzJChMhl95ZaaU9PLb1_9gPx-zbM-6MaY0gr-bCsF6t7-37evd_urD_hbZi_sTvRPdLiz9DcI17Sk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274436684</pqid></control><display><type>article</type><title>From skylight input to behavioural output: A computational model of the insect polarised light compass</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Gkanias, Evripidis ; Risse, Benjamin ; Mangan, Michael ; Webb, Barbara</creator><contributor>Ayers, Joseph</contributor><creatorcontrib>Gkanias, Evripidis ; Risse, Benjamin ; Mangan, Michael ; Webb, Barbara ; Ayers, Joseph</creatorcontrib><description>Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007123</identifier><identifier>PMID: 31318859</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal navigation ; Animals ; Behavior, Animal - physiology ; Biology and Life Sciences ; Brain ; Brain - physiology ; Compasses ; Computational Biology ; Computational neuroscience ; Computer applications ; Computer science ; Computer Simulation ; Cues ; Ecology and Environmental Sciences ; Engineering and Technology ; Homing Behavior - physiology ; Informatics ; Insecta - physiology ; Insects ; International conferences ; Light ; Mathematical models ; Medicine and Health Sciences ; Models, Biological ; Models, Neurological ; Neural circuitry ; Neural networks ; Neurons ; Optic Lobe, Nonmammalian - physiology ; Optics ; Orientation - physiology ; Photoreceptor Cells, Invertebrate - physiology ; Physiological aspects ; Physiology ; Polarization ; Robotics ; Robots ; Sensor arrays ; Sensors ; Social Sciences ; Spatial Behavior - physiology ; Sun ; Sunlight ; Supervision</subject><ispartof>PLoS computational biology, 2019-07, Vol.15 (7), p.e1007123-e1007123</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Gkanias et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Gkanias et al 2019 Gkanias et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</citedby><cites>FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</cites><orcidid>0000-0002-8336-6926 ; 0000-0002-0293-8874 ; 0000-0003-3343-9039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2274436684/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2274436684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31318859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ayers, Joseph</contributor><creatorcontrib>Gkanias, Evripidis</creatorcontrib><creatorcontrib>Risse, Benjamin</creatorcontrib><creatorcontrib>Mangan, Michael</creatorcontrib><creatorcontrib>Webb, Barbara</creatorcontrib><title>From skylight input to behavioural output: A computational model of the insect polarised light compass</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.</description><subject>Animal navigation</subject><subject>Animals</subject><subject>Behavior, Animal - physiology</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Compasses</subject><subject>Computational Biology</subject><subject>Computational neuroscience</subject><subject>Computer applications</subject><subject>Computer science</subject><subject>Computer Simulation</subject><subject>Cues</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Homing Behavior - physiology</subject><subject>Informatics</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>International conferences</subject><subject>Light</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optic Lobe, Nonmammalian - physiology</subject><subject>Optics</subject><subject>Orientation - physiology</subject><subject>Photoreceptor Cells, Invertebrate - physiology</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polarization</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Social Sciences</subject><subject>Spatial Behavior - physiology</subject><subject>Sun</subject><subject>Sunlight</subject><subject>Supervision</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfb6czkgRRWFSBVIfJwt2ztOHHbX6dpb0X-PQ9KqQVzQHnY8ft53xqOpqucEzwmV5O0mTuNguvnW2TAnGEtS0wfVKeGcziTl6uG9-KR6ktIG4xI24nF1QgklSvHmtPIXY-xR-nnThdU6ozBsp4xyRBbW5jqUEqZDccol-w4tkIt9iUwOsVRGfWyh3HqU11CUCVxG29iZMSRo0d5wpzApPa0eedMleHb4n1U_Lj58P_80u_zycXm-uJw5QWmeWW4c1MZzaxXhjNeOGeulwrYFhw1uhMHMU-GwYFQpRhpWzoTUvpGtB07Pqpd7320Xkz6MKOm6loxRIRQrxHJPtNFs9HYMvRlvdDRB_0nEcaXNmIPrQDeqMYKDkDVRTHpjMSsdeFDcMgKWFq_3h2qT7aF1MOQyryPT45shrPUqXmshqJJy18zrg8EYryZIWfchOeg6M0Ccdn0LUotGSFzQV3-h_37dfE-tTHlAGHwsdV35WuiDiwP4UPIL3nCiKGnqInhzJChMhl95ZaaU9PLb1_9gPx-zbM-6MaY0gr-bCsF6t7-37evd_urD_hbZi_sTvRPdLiz9DcI17Sk</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Gkanias, Evripidis</creator><creator>Risse, Benjamin</creator><creator>Mangan, Michael</creator><creator>Webb, Barbara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8336-6926</orcidid><orcidid>https://orcid.org/0000-0002-0293-8874</orcidid><orcidid>https://orcid.org/0000-0003-3343-9039</orcidid></search><sort><creationdate>20190701</creationdate><title>From skylight input to behavioural output: A computational model of the insect polarised light compass</title><author>Gkanias, Evripidis ; Risse, Benjamin ; Mangan, Michael ; Webb, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal navigation</topic><topic>Animals</topic><topic>Behavior, Animal - physiology</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Compasses</topic><topic>Computational Biology</topic><topic>Computational neuroscience</topic><topic>Computer applications</topic><topic>Computer science</topic><topic>Computer Simulation</topic><topic>Cues</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Homing Behavior - physiology</topic><topic>Informatics</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>International conferences</topic><topic>Light</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optic Lobe, Nonmammalian - physiology</topic><topic>Optics</topic><topic>Orientation - physiology</topic><topic>Photoreceptor Cells, Invertebrate - physiology</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polarization</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Social Sciences</topic><topic>Spatial Behavior - physiology</topic><topic>Sun</topic><topic>Sunlight</topic><topic>Supervision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gkanias, Evripidis</creatorcontrib><creatorcontrib>Risse, Benjamin</creatorcontrib><creatorcontrib>Mangan, Michael</creatorcontrib><creatorcontrib>Webb, Barbara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gkanias, Evripidis</au><au>Risse, Benjamin</au><au>Mangan, Michael</au><au>Webb, Barbara</au><au>Ayers, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From skylight input to behavioural output: A computational model of the insect polarised light compass</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>e1007123</spage><epage>e1007123</epage><pages>e1007123-e1007123</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31318859</pmid><doi>10.1371/journal.pcbi.1007123</doi><orcidid>https://orcid.org/0000-0002-8336-6926</orcidid><orcidid>https://orcid.org/0000-0002-0293-8874</orcidid><orcidid>https://orcid.org/0000-0003-3343-9039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-07, Vol.15 (7), p.e1007123-e1007123 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2274436684 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Animal navigation Animals Behavior, Animal - physiology Biology and Life Sciences Brain Brain - physiology Compasses Computational Biology Computational neuroscience Computer applications Computer science Computer Simulation Cues Ecology and Environmental Sciences Engineering and Technology Homing Behavior - physiology Informatics Insecta - physiology Insects International conferences Light Mathematical models Medicine and Health Sciences Models, Biological Models, Neurological Neural circuitry Neural networks Neurons Optic Lobe, Nonmammalian - physiology Optics Orientation - physiology Photoreceptor Cells, Invertebrate - physiology Physiological aspects Physiology Polarization Robotics Robots Sensor arrays Sensors Social Sciences Spatial Behavior - physiology Sun Sunlight Supervision |
title | From skylight input to behavioural output: A computational model of the insect polarised light compass |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20skylight%20input%20to%20behavioural%20output:%20A%20computational%20model%20of%20the%20insect%20polarised%20light%20compass&rft.jtitle=PLoS%20computational%20biology&rft.au=Gkanias,%20Evripidis&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=e1007123&rft.epage=e1007123&rft.pages=e1007123-e1007123&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007123&rft_dat=%3Cgale_plos_%3EA595183192%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2274436684&rft_id=info:pmid/31318859&rft_galeid=A595183192&rfr_iscdi=true |