Loading…

From skylight input to behavioural output: A computational model of the insect polarised light compass

Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information c...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2019-07, Vol.15 (7), p.e1007123-e1007123
Main Authors: Gkanias, Evripidis, Risse, Benjamin, Mangan, Michael, Webb, Barbara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53
cites cdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53
container_end_page e1007123
container_issue 7
container_start_page e1007123
container_title PLoS computational biology
container_volume 15
creator Gkanias, Evripidis
Risse, Benjamin
Mangan, Michael
Webb, Barbara
description Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.
doi_str_mv 10.1371/journal.pcbi.1007123
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2274436684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595183192</galeid><doaj_id>oai_doaj_org_article_989a65e6721847fab04096fe85b41eb3</doaj_id><sourcerecordid>A595183192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfb6czkgRRWFSBVIfJwt2ztOHHbX6dpb0X-PQ9KqQVzQHnY8ft53xqOpqucEzwmV5O0mTuNguvnW2TAnGEtS0wfVKeGcziTl6uG9-KR6ktIG4xI24nF1QgklSvHmtPIXY-xR-nnThdU6ozBsp4xyRBbW5jqUEqZDccol-w4tkIt9iUwOsVRGfWyh3HqU11CUCVxG29iZMSRo0d5wpzApPa0eedMleHb4n1U_Lj58P_80u_zycXm-uJw5QWmeWW4c1MZzaxXhjNeOGeulwrYFhw1uhMHMU-GwYFQpRhpWzoTUvpGtB07Pqpd7320Xkz6MKOm6loxRIRQrxHJPtNFs9HYMvRlvdDRB_0nEcaXNmIPrQDeqMYKDkDVRTHpjMSsdeFDcMgKWFq_3h2qT7aF1MOQyryPT45shrPUqXmshqJJy18zrg8EYryZIWfchOeg6M0Ccdn0LUotGSFzQV3-h_37dfE-tTHlAGHwsdV35WuiDiwP4UPIL3nCiKGnqInhzJChMhl95ZaaU9PLb1_9gPx-zbM-6MaY0gr-bCsF6t7-37evd_urD_hbZi_sTvRPdLiz9DcI17Sk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274436684</pqid></control><display><type>article</type><title>From skylight input to behavioural output: A computational model of the insect polarised light compass</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Gkanias, Evripidis ; Risse, Benjamin ; Mangan, Michael ; Webb, Barbara</creator><contributor>Ayers, Joseph</contributor><creatorcontrib>Gkanias, Evripidis ; Risse, Benjamin ; Mangan, Michael ; Webb, Barbara ; Ayers, Joseph</creatorcontrib><description>Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007123</identifier><identifier>PMID: 31318859</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal navigation ; Animals ; Behavior, Animal - physiology ; Biology and Life Sciences ; Brain ; Brain - physiology ; Compasses ; Computational Biology ; Computational neuroscience ; Computer applications ; Computer science ; Computer Simulation ; Cues ; Ecology and Environmental Sciences ; Engineering and Technology ; Homing Behavior - physiology ; Informatics ; Insecta - physiology ; Insects ; International conferences ; Light ; Mathematical models ; Medicine and Health Sciences ; Models, Biological ; Models, Neurological ; Neural circuitry ; Neural networks ; Neurons ; Optic Lobe, Nonmammalian - physiology ; Optics ; Orientation - physiology ; Photoreceptor Cells, Invertebrate - physiology ; Physiological aspects ; Physiology ; Polarization ; Robotics ; Robots ; Sensor arrays ; Sensors ; Social Sciences ; Spatial Behavior - physiology ; Sun ; Sunlight ; Supervision</subject><ispartof>PLoS computational biology, 2019-07, Vol.15 (7), p.e1007123-e1007123</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Gkanias et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Gkanias et al 2019 Gkanias et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</citedby><cites>FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</cites><orcidid>0000-0002-8336-6926 ; 0000-0002-0293-8874 ; 0000-0003-3343-9039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2274436684/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2274436684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31318859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ayers, Joseph</contributor><creatorcontrib>Gkanias, Evripidis</creatorcontrib><creatorcontrib>Risse, Benjamin</creatorcontrib><creatorcontrib>Mangan, Michael</creatorcontrib><creatorcontrib>Webb, Barbara</creatorcontrib><title>From skylight input to behavioural output: A computational model of the insect polarised light compass</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.</description><subject>Animal navigation</subject><subject>Animals</subject><subject>Behavior, Animal - physiology</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Compasses</subject><subject>Computational Biology</subject><subject>Computational neuroscience</subject><subject>Computer applications</subject><subject>Computer science</subject><subject>Computer Simulation</subject><subject>Cues</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Homing Behavior - physiology</subject><subject>Informatics</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>International conferences</subject><subject>Light</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optic Lobe, Nonmammalian - physiology</subject><subject>Optics</subject><subject>Orientation - physiology</subject><subject>Photoreceptor Cells, Invertebrate - physiology</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polarization</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Social Sciences</subject><subject>Spatial Behavior - physiology</subject><subject>Sun</subject><subject>Sunlight</subject><subject>Supervision</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfb6czkgRRWFSBVIfJwt2ztOHHbX6dpb0X-PQ9KqQVzQHnY8ft53xqOpqucEzwmV5O0mTuNguvnW2TAnGEtS0wfVKeGcziTl6uG9-KR6ktIG4xI24nF1QgklSvHmtPIXY-xR-nnThdU6ozBsp4xyRBbW5jqUEqZDccol-w4tkIt9iUwOsVRGfWyh3HqU11CUCVxG29iZMSRo0d5wpzApPa0eedMleHb4n1U_Lj58P_80u_zycXm-uJw5QWmeWW4c1MZzaxXhjNeOGeulwrYFhw1uhMHMU-GwYFQpRhpWzoTUvpGtB07Pqpd7320Xkz6MKOm6loxRIRQrxHJPtNFs9HYMvRlvdDRB_0nEcaXNmIPrQDeqMYKDkDVRTHpjMSsdeFDcMgKWFq_3h2qT7aF1MOQyryPT45shrPUqXmshqJJy18zrg8EYryZIWfchOeg6M0Ccdn0LUotGSFzQV3-h_37dfE-tTHlAGHwsdV35WuiDiwP4UPIL3nCiKGnqInhzJChMhl95ZaaU9PLb1_9gPx-zbM-6MaY0gr-bCsF6t7-37evd_urD_hbZi_sTvRPdLiz9DcI17Sk</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Gkanias, Evripidis</creator><creator>Risse, Benjamin</creator><creator>Mangan, Michael</creator><creator>Webb, Barbara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8336-6926</orcidid><orcidid>https://orcid.org/0000-0002-0293-8874</orcidid><orcidid>https://orcid.org/0000-0003-3343-9039</orcidid></search><sort><creationdate>20190701</creationdate><title>From skylight input to behavioural output: A computational model of the insect polarised light compass</title><author>Gkanias, Evripidis ; Risse, Benjamin ; Mangan, Michael ; Webb, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal navigation</topic><topic>Animals</topic><topic>Behavior, Animal - physiology</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Compasses</topic><topic>Computational Biology</topic><topic>Computational neuroscience</topic><topic>Computer applications</topic><topic>Computer science</topic><topic>Computer Simulation</topic><topic>Cues</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Homing Behavior - physiology</topic><topic>Informatics</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>International conferences</topic><topic>Light</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optic Lobe, Nonmammalian - physiology</topic><topic>Optics</topic><topic>Orientation - physiology</topic><topic>Photoreceptor Cells, Invertebrate - physiology</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polarization</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Social Sciences</topic><topic>Spatial Behavior - physiology</topic><topic>Sun</topic><topic>Sunlight</topic><topic>Supervision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gkanias, Evripidis</creatorcontrib><creatorcontrib>Risse, Benjamin</creatorcontrib><creatorcontrib>Mangan, Michael</creatorcontrib><creatorcontrib>Webb, Barbara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gkanias, Evripidis</au><au>Risse, Benjamin</au><au>Mangan, Michael</au><au>Webb, Barbara</au><au>Ayers, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From skylight input to behavioural output: A computational model of the insect polarised light compass</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>e1007123</spage><epage>e1007123</epage><pages>e1007123-e1007123</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31318859</pmid><doi>10.1371/journal.pcbi.1007123</doi><orcidid>https://orcid.org/0000-0002-8336-6926</orcidid><orcidid>https://orcid.org/0000-0002-0293-8874</orcidid><orcidid>https://orcid.org/0000-0003-3343-9039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2019-07, Vol.15 (7), p.e1007123-e1007123
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2274436684
source Open Access: PubMed Central; Publicly Available Content Database
subjects Animal navigation
Animals
Behavior, Animal - physiology
Biology and Life Sciences
Brain
Brain - physiology
Compasses
Computational Biology
Computational neuroscience
Computer applications
Computer science
Computer Simulation
Cues
Ecology and Environmental Sciences
Engineering and Technology
Homing Behavior - physiology
Informatics
Insecta - physiology
Insects
International conferences
Light
Mathematical models
Medicine and Health Sciences
Models, Biological
Models, Neurological
Neural circuitry
Neural networks
Neurons
Optic Lobe, Nonmammalian - physiology
Optics
Orientation - physiology
Photoreceptor Cells, Invertebrate - physiology
Physiological aspects
Physiology
Polarization
Robotics
Robots
Sensor arrays
Sensors
Social Sciences
Spatial Behavior - physiology
Sun
Sunlight
Supervision
title From skylight input to behavioural output: A computational model of the insect polarised light compass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20skylight%20input%20to%20behavioural%20output:%20A%20computational%20model%20of%20the%20insect%20polarised%20light%20compass&rft.jtitle=PLoS%20computational%20biology&rft.au=Gkanias,%20Evripidis&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=e1007123&rft.epage=e1007123&rft.pages=e1007123-e1007123&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007123&rft_dat=%3Cgale_plos_%3EA595183192%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-b5ace2af5bb815452c4abf780bdec0a096a04f36c064388419404f112f97dfe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2274436684&rft_id=info:pmid/31318859&rft_galeid=A595183192&rfr_iscdi=true