Loading…
A multi-scale coevolutionary approach to predict interactions between protein domains
Interacting proteins and protein domains coevolve on multiple scales, from their correlated presence across species, to correlations in amino-acid usage. Genomic databases provide rapidly growing data for variability in genomic protein content and in protein sequences, calling for computational pred...
Saved in:
Published in: | PLoS computational biology 2019-10, Vol.15 (10), p.e1006891-e1006891 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c667t-669b1135736d78c5753c390ab7f05d7d8334b4c7a9676aa385e15d714a57eb5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c667t-669b1135736d78c5753c390ab7f05d7d8334b4c7a9676aa385e15d714a57eb5d3 |
container_end_page | e1006891 |
container_issue | 10 |
container_start_page | e1006891 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Croce, Giancarlo Gueudré, Thomas Ruiz Cuevas, Maria Virginia Keidel, Victoria Figliuzzi, Matteo Szurmant, Hendrik Weigt, Martin |
description | Interacting proteins and protein domains coevolve on multiple scales, from their correlated presence across species, to correlations in amino-acid usage. Genomic databases provide rapidly growing data for variability in genomic protein content and in protein sequences, calling for computational predictions of unknown interactions. We first introduce the concept of direct phyletic couplings, based on global statistical models of phylogenetic profiles. They strongly increase the accuracy of predicting pairs of related protein domains beyond simpler correlation-based approaches like phylogenetic profiling (80% vs. 30-50% positives out of the 1000 highest-scoring pairs). Combined with the direct coupling analysis of inter-protein residue-residue coevolution, we provide multi-scale evidence for direct but unknown interaction between protein families. An in-depth discussion shows these to be biologically sensible and directly experimentally testable. Negative phyletic couplings highlight alternative solutions for the same functionality, including documented cases of convergent evolution. Thereby our work proves the strong potential of global statistical modeling approaches to genome-wide coevolutionary analysis, far beyond the established use for individual protein complexes and domain-domain interactions. |
doi_str_mv | 10.1371/journal.pcbi.1006891 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2314933839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607647127</galeid><doaj_id>oai_doaj_org_article_4a5fc03f4e22497895625ba61020f1a9</doaj_id><sourcerecordid>A607647127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-669b1135736d78c5753c390ab7f05d7d8334b4c7a9676aa385e15d714a57eb5d3</originalsourceid><addsrcrecordid>eNqVkk2P0zAQhiMEYpfCP0AQiQscWvwR28kFqVoBW6kCCdiz5TiT1qvEDrZT4N_j0OyyXXFBPtiaeeadD0-WPcdohanAb6_d6K3qVoOuzQojxMsKP8jOMWN0KSgrH955n2VPQrhGKD0r_jg7o5jTgnJynl2t837solkGrTrItYOD68ZonFX-V66GwTul93l0-eChMTrmxkbwSk9IyGuIPwBscroIxuaN65Wx4Wn2qFVdgGfzvciuPrz_dnG53H7-uLlYb5eacxGXnFc1xpQJyhtRaiYY1bRCqhYtYo1oSkqLutBCVVxwpWjJACc7LhQTULOGLrKXR92hc0HOEwmSUFxUlJa0SsTmSDROXcvBmz71JZ0y8o_B-Z1UPhrdgUyqrUa0LYCQohJlxThhteIYEdRiNWm9m7ONdQ-NBhu96k5ETz3W7OXOHSQvCRGpuUX25iiwvxd2ud7KyYZIgUUpyAEn9vWczLvvI4QoexM0dJ2y4MapRyREkXTLhL66h_57EqsjtUsfLY1tXapRp9NAb7Sz0JpkX3MkeCEwEX-rnQMSE-Fn3KkxBLn5-uU_2E-nbHFktXcheGhvR4GRnFb7pnw5rbacVzuFvbg7_dugm12mvwFLxfPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314933839</pqid></control><display><type>article</type><title>A multi-scale coevolutionary approach to predict interactions between protein domains</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Croce, Giancarlo ; Gueudré, Thomas ; Ruiz Cuevas, Maria Virginia ; Keidel, Victoria ; Figliuzzi, Matteo ; Szurmant, Hendrik ; Weigt, Martin</creator><contributor>Maslov, Sergei</contributor><creatorcontrib>Croce, Giancarlo ; Gueudré, Thomas ; Ruiz Cuevas, Maria Virginia ; Keidel, Victoria ; Figliuzzi, Matteo ; Szurmant, Hendrik ; Weigt, Martin ; Maslov, Sergei</creatorcontrib><description>Interacting proteins and protein domains coevolve on multiple scales, from their correlated presence across species, to correlations in amino-acid usage. Genomic databases provide rapidly growing data for variability in genomic protein content and in protein sequences, calling for computational predictions of unknown interactions. We first introduce the concept of direct phyletic couplings, based on global statistical models of phylogenetic profiles. They strongly increase the accuracy of predicting pairs of related protein domains beyond simpler correlation-based approaches like phylogenetic profiling (80% vs. 30-50% positives out of the 1000 highest-scoring pairs). Combined with the direct coupling analysis of inter-protein residue-residue coevolution, we provide multi-scale evidence for direct but unknown interaction between protein families. An in-depth discussion shows these to be biologically sensible and directly experimentally testable. Negative phyletic couplings highlight alternative solutions for the same functionality, including documented cases of convergent evolution. Thereby our work proves the strong potential of global statistical modeling approaches to genome-wide coevolutionary analysis, far beyond the established use for individual protein complexes and domain-domain interactions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006891</identifier><identifier>PMID: 31634362</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Algorithms ; Amino acids ; Amino Acids - metabolism ; Animals ; Biology and Life Sciences ; Biophysical Phenomena ; Coevolution ; Computational Biology - methods ; Computer and Information Sciences ; Computer applications ; Convergent evolution ; Correlation ; Couplings ; Criminal investigation ; E coli ; Evolution (Biology) ; Evolution, Molecular ; Genomes ; Genomics ; Health sciences ; Humans ; Life Sciences ; Mathematical models ; Methods ; Models, Statistical ; Multiscale analysis ; Osteopathic medicine ; Phylogenetics ; Phylogeny ; Physical Sciences ; Predictions ; Protein Binding - physiology ; Protein Domains - physiology ; Protein families ; Protein Interaction Domains and Motifs - physiology ; Protein Interaction Mapping - methods ; Proteins ; Proteins - chemistry ; Research and Analysis Methods ; Statistical analysis ; Statistical models</subject><ispartof>PLoS computational biology, 2019-10, Vol.15 (10), p.e1006891-e1006891</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Croce et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Croce et al 2019 Croce et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-669b1135736d78c5753c390ab7f05d7d8334b4c7a9676aa385e15d714a57eb5d3</citedby><cites>FETCH-LOGICAL-c667t-669b1135736d78c5753c390ab7f05d7d8334b4c7a9676aa385e15d714a57eb5d3</cites><orcidid>0000-0001-9462-3679 ; 0000-0002-0492-3684 ; 0000-0003-0944-1884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314933839/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314933839?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31634362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02417872$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Maslov, Sergei</contributor><creatorcontrib>Croce, Giancarlo</creatorcontrib><creatorcontrib>Gueudré, Thomas</creatorcontrib><creatorcontrib>Ruiz Cuevas, Maria Virginia</creatorcontrib><creatorcontrib>Keidel, Victoria</creatorcontrib><creatorcontrib>Figliuzzi, Matteo</creatorcontrib><creatorcontrib>Szurmant, Hendrik</creatorcontrib><creatorcontrib>Weigt, Martin</creatorcontrib><title>A multi-scale coevolutionary approach to predict interactions between protein domains</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Interacting proteins and protein domains coevolve on multiple scales, from their correlated presence across species, to correlations in amino-acid usage. Genomic databases provide rapidly growing data for variability in genomic protein content and in protein sequences, calling for computational predictions of unknown interactions. We first introduce the concept of direct phyletic couplings, based on global statistical models of phylogenetic profiles. They strongly increase the accuracy of predicting pairs of related protein domains beyond simpler correlation-based approaches like phylogenetic profiling (80% vs. 30-50% positives out of the 1000 highest-scoring pairs). Combined with the direct coupling analysis of inter-protein residue-residue coevolution, we provide multi-scale evidence for direct but unknown interaction between protein families. An in-depth discussion shows these to be biologically sensible and directly experimentally testable. Negative phyletic couplings highlight alternative solutions for the same functionality, including documented cases of convergent evolution. Thereby our work proves the strong potential of global statistical modeling approaches to genome-wide coevolutionary analysis, far beyond the established use for individual protein complexes and domain-domain interactions.</description><subject>Acids</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biophysical Phenomena</subject><subject>Coevolution</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Convergent evolution</subject><subject>Correlation</subject><subject>Couplings</subject><subject>Criminal investigation</subject><subject>E coli</subject><subject>Evolution (Biology)</subject><subject>Evolution, Molecular</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health sciences</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Multiscale analysis</subject><subject>Osteopathic medicine</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Protein Binding - physiology</subject><subject>Protein Domains - physiology</subject><subject>Protein families</subject><subject>Protein Interaction Domains and Motifs - physiology</subject><subject>Protein Interaction Mapping - methods</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Research and Analysis Methods</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2P0zAQhiMEYpfCP0AQiQscWvwR28kFqVoBW6kCCdiz5TiT1qvEDrZT4N_j0OyyXXFBPtiaeeadD0-WPcdohanAb6_d6K3qVoOuzQojxMsKP8jOMWN0KSgrH955n2VPQrhGKD0r_jg7o5jTgnJynl2t837solkGrTrItYOD68ZonFX-V66GwTul93l0-eChMTrmxkbwSk9IyGuIPwBscroIxuaN65Wx4Wn2qFVdgGfzvciuPrz_dnG53H7-uLlYb5eacxGXnFc1xpQJyhtRaiYY1bRCqhYtYo1oSkqLutBCVVxwpWjJACc7LhQTULOGLrKXR92hc0HOEwmSUFxUlJa0SsTmSDROXcvBmz71JZ0y8o_B-Z1UPhrdgUyqrUa0LYCQohJlxThhteIYEdRiNWm9m7ONdQ-NBhu96k5ETz3W7OXOHSQvCRGpuUX25iiwvxd2ud7KyYZIgUUpyAEn9vWczLvvI4QoexM0dJ2y4MapRyREkXTLhL66h_57EqsjtUsfLY1tXapRp9NAb7Sz0JpkX3MkeCEwEX-rnQMSE-Fn3KkxBLn5-uU_2E-nbHFktXcheGhvR4GRnFb7pnw5rbacVzuFvbg7_dugm12mvwFLxfPQ</recordid><startdate>20191021</startdate><enddate>20191021</enddate><creator>Croce, Giancarlo</creator><creator>Gueudré, Thomas</creator><creator>Ruiz Cuevas, Maria Virginia</creator><creator>Keidel, Victoria</creator><creator>Figliuzzi, Matteo</creator><creator>Szurmant, Hendrik</creator><creator>Weigt, Martin</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9462-3679</orcidid><orcidid>https://orcid.org/0000-0002-0492-3684</orcidid><orcidid>https://orcid.org/0000-0003-0944-1884</orcidid></search><sort><creationdate>20191021</creationdate><title>A multi-scale coevolutionary approach to predict interactions between protein domains</title><author>Croce, Giancarlo ; Gueudré, Thomas ; Ruiz Cuevas, Maria Virginia ; Keidel, Victoria ; Figliuzzi, Matteo ; Szurmant, Hendrik ; Weigt, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-669b1135736d78c5753c390ab7f05d7d8334b4c7a9676aa385e15d714a57eb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biophysical Phenomena</topic><topic>Coevolution</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Convergent evolution</topic><topic>Correlation</topic><topic>Couplings</topic><topic>Criminal investigation</topic><topic>E coli</topic><topic>Evolution (Biology)</topic><topic>Evolution, Molecular</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health sciences</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Multiscale analysis</topic><topic>Osteopathic medicine</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Protein Binding - physiology</topic><topic>Protein Domains - physiology</topic><topic>Protein families</topic><topic>Protein Interaction Domains and Motifs - physiology</topic><topic>Protein Interaction Mapping - methods</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Research and Analysis Methods</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croce, Giancarlo</creatorcontrib><creatorcontrib>Gueudré, Thomas</creatorcontrib><creatorcontrib>Ruiz Cuevas, Maria Virginia</creatorcontrib><creatorcontrib>Keidel, Victoria</creatorcontrib><creatorcontrib>Figliuzzi, Matteo</creatorcontrib><creatorcontrib>Szurmant, Hendrik</creatorcontrib><creatorcontrib>Weigt, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croce, Giancarlo</au><au>Gueudré, Thomas</au><au>Ruiz Cuevas, Maria Virginia</au><au>Keidel, Victoria</au><au>Figliuzzi, Matteo</au><au>Szurmant, Hendrik</au><au>Weigt, Martin</au><au>Maslov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-scale coevolutionary approach to predict interactions between protein domains</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-10-21</date><risdate>2019</risdate><volume>15</volume><issue>10</issue><spage>e1006891</spage><epage>e1006891</epage><pages>e1006891-e1006891</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Interacting proteins and protein domains coevolve on multiple scales, from their correlated presence across species, to correlations in amino-acid usage. Genomic databases provide rapidly growing data for variability in genomic protein content and in protein sequences, calling for computational predictions of unknown interactions. We first introduce the concept of direct phyletic couplings, based on global statistical models of phylogenetic profiles. They strongly increase the accuracy of predicting pairs of related protein domains beyond simpler correlation-based approaches like phylogenetic profiling (80% vs. 30-50% positives out of the 1000 highest-scoring pairs). Combined with the direct coupling analysis of inter-protein residue-residue coevolution, we provide multi-scale evidence for direct but unknown interaction between protein families. An in-depth discussion shows these to be biologically sensible and directly experimentally testable. Negative phyletic couplings highlight alternative solutions for the same functionality, including documented cases of convergent evolution. Thereby our work proves the strong potential of global statistical modeling approaches to genome-wide coevolutionary analysis, far beyond the established use for individual protein complexes and domain-domain interactions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31634362</pmid><doi>10.1371/journal.pcbi.1006891</doi><orcidid>https://orcid.org/0000-0001-9462-3679</orcidid><orcidid>https://orcid.org/0000-0002-0492-3684</orcidid><orcidid>https://orcid.org/0000-0003-0944-1884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-10, Vol.15 (10), p.e1006891-e1006891 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2314933839 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Acids Algorithms Amino acids Amino Acids - metabolism Animals Biology and Life Sciences Biophysical Phenomena Coevolution Computational Biology - methods Computer and Information Sciences Computer applications Convergent evolution Correlation Couplings Criminal investigation E coli Evolution (Biology) Evolution, Molecular Genomes Genomics Health sciences Humans Life Sciences Mathematical models Methods Models, Statistical Multiscale analysis Osteopathic medicine Phylogenetics Phylogeny Physical Sciences Predictions Protein Binding - physiology Protein Domains - physiology Protein families Protein Interaction Domains and Motifs - physiology Protein Interaction Mapping - methods Proteins Proteins - chemistry Research and Analysis Methods Statistical analysis Statistical models |
title | A multi-scale coevolutionary approach to predict interactions between protein domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-scale%20coevolutionary%20approach%20to%20predict%20interactions%20between%20protein%20domains&rft.jtitle=PLoS%20computational%20biology&rft.au=Croce,%20Giancarlo&rft.date=2019-10-21&rft.volume=15&rft.issue=10&rft.spage=e1006891&rft.epage=e1006891&rft.pages=e1006891-e1006891&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006891&rft_dat=%3Cgale_plos_%3EA607647127%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c667t-669b1135736d78c5753c390ab7f05d7d8334b4c7a9676aa385e15d714a57eb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314933839&rft_id=info:pmid/31634362&rft_galeid=A607647127&rfr_iscdi=true |