Loading…

Mapping developmental QTL for plant height in soybean [Glycine max (L.) Merr.] using a four-way recombinant inbred line population

Plant height (PH) is an important trait in soybean, as taller plants may have higher yields but may also be at risk for lodging. Many genes act jointly to influence PH throughout development. To map the quantitative trait loci (QTL) controlling PH, we used the unconditional variable method (UVM) and...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-11, Vol.14 (11), p.e0224897-e0224897
Main Authors: Xue, Hong, Tian, Xiaocui, Zhang, Kaixin, Li, Wenbin, Qi, Zhongying, Fang, Yanlong, Li, Xiyu, Wang, Yue, Song, Jie, Li, Wen-Xia, Ning, Hailong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant height (PH) is an important trait in soybean, as taller plants may have higher yields but may also be at risk for lodging. Many genes act jointly to influence PH throughout development. To map the quantitative trait loci (QTL) controlling PH, we used the unconditional variable method (UVM) and conditional variable method (CVM) to analyze PH data for a four-way recombinant inbred line (FW-RIL) population derived from the cross of (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19). We identified 7, 8, 16, 19, 15, 27, 17, 27, 22, and 24 QTL associated with PH at 10 developmental stages, respectively. These QTL mapped to 95 genomic regions. Among these QTL, 9 were detected using UVM and CVM, and 89 and 66 were only detected by UVM or CVM, respectively. In total, 36 QTL controlling PH were detected at multiple developmental stages and these made unequal contributions to genetic variation throughout development. Among 19 novel regions discovered in our study, 7 could explain over 10% of the phenotypic variation and contained only one single QTL. The unconditional and conditional QTL detected here could be used in molecular design breeding across the whole developmental procedure.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0224897