Loading…
Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals
Wearable electronics capable of recording and transmitting biosignals can provide convenient and pervasive health monitoring. A typical EEG recording produces large amount of data. Conventional compression methods cannot compress date below Nyquist rate, thus resulting in large amount of data even a...
Saved in:
Published in: | PloS one 2020-01, Vol.15 (1), p.e0225397-e0225397 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-3e593f242636f426ce2de2ac58a565bca397e018d260a83d43c02315e079f69b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-3e593f242636f426ce2de2ac58a565bca397e018d260a83d43c02315e079f69b3 |
container_end_page | e0225397 |
container_issue | 1 |
container_start_page | e0225397 |
container_title | PloS one |
container_volume | 15 |
creator | Tayyib, Muhammad Amir, Muhammad Javed, Umer Akram, M Waseem Yousufi, Mussyab Qureshi, Ijaz M Abdullah, Suheel Ullah, Hayat |
description | Wearable electronics capable of recording and transmitting biosignals can provide convenient and pervasive health monitoring. A typical EEG recording produces large amount of data. Conventional compression methods cannot compress date below Nyquist rate, thus resulting in large amount of data even after compression. This needs large storage and hence long transmission time. Compressed sensing has proposed solution to this problem and given a way to compress data below Nyquist rate. In this paper, double temporal sparsity based reconstruction algorithm has been applied for the recovery of compressively sampled EEG data. The results are further improved by modifying the double temporal sparsity based reconstruction algorithm using schattern-p norm along with decorrelation transformation of EEG data before processing. The proposed modified double temporal sparsity based reconstruction algorithm out-perform block sparse bayesian learning and Rackness based compressed sensing algorithms in terms of SNDR and NMSE. Simulation results further show that the proposed algorithm has better convergence rate and less execution time. |
doi_str_mv | 10.1371/journal.pone.0225397 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2334187028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610733120</galeid><doaj_id>oai_doaj_org_article_8071227fc5184f75bfb4ba87f71b71e9</doaj_id><sourcerecordid>A610733120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3e593f242636f426ce2de2ac58a565bca397e018d260a83d43c02315e079f69b3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLm0SfsiDMu4DiwseHvwJaTpyUyWNBmTdnG-vRmnu0xlHyTQpMnv_JNzy7KXGC0w5fjDjR-Ck3ax8w4WiJCS1vxRdo5rSuaMIPr4ZH2WPYvxBqGSVow9zc4orjEiqDjPfi6VAgtB9tDmcSdDNP0-b2RMvwGUd7EPg-qNd7nXufLdLkCM5hbsPo_gDlg32N6orXQObL5aXebRbNLD4vPsiU4TvBjnWfb90-rbxef51fXl-mJ5NVesJv2cQllTTQrCKNPpq4C0QKQqK1myslEy-QUIVy1hSFa0LahChOISEK81qxs6y14fdXfWRzGGJQpCaYErjkiViPWRaL28EbtgOhn2wksj_m74sBEyJB8siApxTAjXqsRVoXnZ6KZoZMU1xw3HUCetj-NtQ9NBq8D1QdqJ6PTEma3Y-FvB6oJhwpPAu1Eg-F8DxF50JqYcWOnAD8d3c1TwkiX0zT_ow96N1EYmB4zTPt2rDqJiyTDilOJUArNs8QCVRgudSXkGbdL-xOD9xCAxPfzuN3KIUay_fvl_9vrHlH17wm5B2n4bvR0ONRanYHEEVfAxBtD3QcZIHFrgLhri0AJibIFk9uo0QfdGdzVP_wCq_ACI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334187028</pqid></control><display><type>article</type><title>Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tayyib, Muhammad ; Amir, Muhammad ; Javed, Umer ; Akram, M Waseem ; Yousufi, Mussyab ; Qureshi, Ijaz M ; Abdullah, Suheel ; Ullah, Hayat</creator><creatorcontrib>Tayyib, Muhammad ; Amir, Muhammad ; Javed, Umer ; Akram, M Waseem ; Yousufi, Mussyab ; Qureshi, Ijaz M ; Abdullah, Suheel ; Ullah, Hayat</creatorcontrib><description>Wearable electronics capable of recording and transmitting biosignals can provide convenient and pervasive health monitoring. A typical EEG recording produces large amount of data. Conventional compression methods cannot compress date below Nyquist rate, thus resulting in large amount of data even after compression. This needs large storage and hence long transmission time. Compressed sensing has proposed solution to this problem and given a way to compress data below Nyquist rate. In this paper, double temporal sparsity based reconstruction algorithm has been applied for the recovery of compressively sampled EEG data. The results are further improved by modifying the double temporal sparsity based reconstruction algorithm using schattern-p norm along with decorrelation transformation of EEG data before processing. The proposed modified double temporal sparsity based reconstruction algorithm out-perform block sparse bayesian learning and Rackness based compressed sensing algorithms in terms of SNDR and NMSE. Simulation results further show that the proposed algorithm has better convergence rate and less execution time.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0225397</identifier><identifier>PMID: 31910204</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Compression ; Computer and Information Sciences ; Computer simulation ; Convulsions & seizures ; Data compression ; Dictionaries ; EEG ; Electroencephalography ; Electroencephalography - methods ; Engineering ; Engineering and Technology ; Field programmable gate arrays ; Fourier transforms ; Health ; Humans ; Image Processing, Computer-Assisted ; Machine learning ; Medicine and Health Sciences ; Methods ; Monitoring, Physiologic ; Multichannel communication ; Noise ; Physical Sciences ; Reconstruction ; Recording ; Research and Analysis Methods ; Signal Processing, Computer-Assisted ; Sparsity ; Time compression ; Wearable Electronic Devices - trends</subject><ispartof>PloS one, 2020-01, Vol.15 (1), p.e0225397-e0225397</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Tayyib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Tayyib et al 2020 Tayyib et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3e593f242636f426ce2de2ac58a565bca397e018d260a83d43c02315e079f69b3</citedby><cites>FETCH-LOGICAL-c692t-3e593f242636f426ce2de2ac58a565bca397e018d260a83d43c02315e079f69b3</cites><orcidid>0000-0002-6108-5090 ; 0000-0001-7956-1481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2334187028/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2334187028?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31910204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayyib, Muhammad</creatorcontrib><creatorcontrib>Amir, Muhammad</creatorcontrib><creatorcontrib>Javed, Umer</creatorcontrib><creatorcontrib>Akram, M Waseem</creatorcontrib><creatorcontrib>Yousufi, Mussyab</creatorcontrib><creatorcontrib>Qureshi, Ijaz M</creatorcontrib><creatorcontrib>Abdullah, Suheel</creatorcontrib><creatorcontrib>Ullah, Hayat</creatorcontrib><title>Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Wearable electronics capable of recording and transmitting biosignals can provide convenient and pervasive health monitoring. A typical EEG recording produces large amount of data. Conventional compression methods cannot compress date below Nyquist rate, thus resulting in large amount of data even after compression. This needs large storage and hence long transmission time. Compressed sensing has proposed solution to this problem and given a way to compress data below Nyquist rate. In this paper, double temporal sparsity based reconstruction algorithm has been applied for the recovery of compressively sampled EEG data. The results are further improved by modifying the double temporal sparsity based reconstruction algorithm using schattern-p norm along with decorrelation transformation of EEG data before processing. The proposed modified double temporal sparsity based reconstruction algorithm out-perform block sparse bayesian learning and Rackness based compressed sensing algorithms in terms of SNDR and NMSE. Simulation results further show that the proposed algorithm has better convergence rate and less execution time.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Compression</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Convulsions & seizures</subject><subject>Data compression</subject><subject>Dictionaries</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Field programmable gate arrays</subject><subject>Fourier transforms</subject><subject>Health</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Monitoring, Physiologic</subject><subject>Multichannel communication</subject><subject>Noise</subject><subject>Physical Sciences</subject><subject>Reconstruction</subject><subject>Recording</subject><subject>Research and Analysis Methods</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sparsity</subject><subject>Time compression</subject><subject>Wearable Electronic Devices - trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLm0SfsiDMu4DiwseHvwJaTpyUyWNBmTdnG-vRmnu0xlHyTQpMnv_JNzy7KXGC0w5fjDjR-Ck3ax8w4WiJCS1vxRdo5rSuaMIPr4ZH2WPYvxBqGSVow9zc4orjEiqDjPfi6VAgtB9tDmcSdDNP0-b2RMvwGUd7EPg-qNd7nXufLdLkCM5hbsPo_gDlg32N6orXQObL5aXebRbNLD4vPsiU4TvBjnWfb90-rbxef51fXl-mJ5NVesJv2cQllTTQrCKNPpq4C0QKQqK1myslEy-QUIVy1hSFa0LahChOISEK81qxs6y14fdXfWRzGGJQpCaYErjkiViPWRaL28EbtgOhn2wksj_m74sBEyJB8siApxTAjXqsRVoXnZ6KZoZMU1xw3HUCetj-NtQ9NBq8D1QdqJ6PTEma3Y-FvB6oJhwpPAu1Eg-F8DxF50JqYcWOnAD8d3c1TwkiX0zT_ow96N1EYmB4zTPt2rDqJiyTDilOJUArNs8QCVRgudSXkGbdL-xOD9xCAxPfzuN3KIUay_fvl_9vrHlH17wm5B2n4bvR0ONRanYHEEVfAxBtD3QcZIHFrgLhri0AJibIFk9uo0QfdGdzVP_wCq_ACI</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Tayyib, Muhammad</creator><creator>Amir, Muhammad</creator><creator>Javed, Umer</creator><creator>Akram, M Waseem</creator><creator>Yousufi, Mussyab</creator><creator>Qureshi, Ijaz M</creator><creator>Abdullah, Suheel</creator><creator>Ullah, Hayat</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6108-5090</orcidid><orcidid>https://orcid.org/0000-0001-7956-1481</orcidid></search><sort><creationdate>20200107</creationdate><title>Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals</title><author>Tayyib, Muhammad ; Amir, Muhammad ; Javed, Umer ; Akram, M Waseem ; Yousufi, Mussyab ; Qureshi, Ijaz M ; Abdullah, Suheel ; Ullah, Hayat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3e593f242636f426ce2de2ac58a565bca397e018d260a83d43c02315e079f69b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Compression</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Convulsions & seizures</topic><topic>Data compression</topic><topic>Dictionaries</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Field programmable gate arrays</topic><topic>Fourier transforms</topic><topic>Health</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Monitoring, Physiologic</topic><topic>Multichannel communication</topic><topic>Noise</topic><topic>Physical Sciences</topic><topic>Reconstruction</topic><topic>Recording</topic><topic>Research and Analysis Methods</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sparsity</topic><topic>Time compression</topic><topic>Wearable Electronic Devices - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayyib, Muhammad</creatorcontrib><creatorcontrib>Amir, Muhammad</creatorcontrib><creatorcontrib>Javed, Umer</creatorcontrib><creatorcontrib>Akram, M Waseem</creatorcontrib><creatorcontrib>Yousufi, Mussyab</creatorcontrib><creatorcontrib>Qureshi, Ijaz M</creatorcontrib><creatorcontrib>Abdullah, Suheel</creatorcontrib><creatorcontrib>Ullah, Hayat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayyib, Muhammad</au><au>Amir, Muhammad</au><au>Javed, Umer</au><au>Akram, M Waseem</au><au>Yousufi, Mussyab</au><au>Qureshi, Ijaz M</au><au>Abdullah, Suheel</au><au>Ullah, Hayat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>e0225397</spage><epage>e0225397</epage><pages>e0225397-e0225397</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Wearable electronics capable of recording and transmitting biosignals can provide convenient and pervasive health monitoring. A typical EEG recording produces large amount of data. Conventional compression methods cannot compress date below Nyquist rate, thus resulting in large amount of data even after compression. This needs large storage and hence long transmission time. Compressed sensing has proposed solution to this problem and given a way to compress data below Nyquist rate. In this paper, double temporal sparsity based reconstruction algorithm has been applied for the recovery of compressively sampled EEG data. The results are further improved by modifying the double temporal sparsity based reconstruction algorithm using schattern-p norm along with decorrelation transformation of EEG data before processing. The proposed modified double temporal sparsity based reconstruction algorithm out-perform block sparse bayesian learning and Rackness based compressed sensing algorithms in terms of SNDR and NMSE. Simulation results further show that the proposed algorithm has better convergence rate and less execution time.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31910204</pmid><doi>10.1371/journal.pone.0225397</doi><tpages>e0225397</tpages><orcidid>https://orcid.org/0000-0002-6108-5090</orcidid><orcidid>https://orcid.org/0000-0001-7956-1481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-01, Vol.15 (1), p.e0225397-e0225397 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2334187028 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Algorithms Bayes Theorem Bayesian analysis Biology and Life Sciences Compression Computer and Information Sciences Computer simulation Convulsions & seizures Data compression Dictionaries EEG Electroencephalography Electroencephalography - methods Engineering Engineering and Technology Field programmable gate arrays Fourier transforms Health Humans Image Processing, Computer-Assisted Machine learning Medicine and Health Sciences Methods Monitoring, Physiologic Multichannel communication Noise Physical Sciences Reconstruction Recording Research and Analysis Methods Signal Processing, Computer-Assisted Sparsity Time compression Wearable Electronic Devices - trends |
title | Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20sparsity%20based%20reconstruction%20of%20compressively%20sensed%20multichannel%20EEG%20signals&rft.jtitle=PloS%20one&rft.au=Tayyib,%20Muhammad&rft.date=2020-01-07&rft.volume=15&rft.issue=1&rft.spage=e0225397&rft.epage=e0225397&rft.pages=e0225397-e0225397&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0225397&rft_dat=%3Cgale_plos_%3EA610733120%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-3e593f242636f426ce2de2ac58a565bca397e018d260a83d43c02315e079f69b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334187028&rft_id=info:pmid/31910204&rft_galeid=A610733120&rfr_iscdi=true |