Loading…

Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software

Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. Myosoft provides an...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-03, Vol.15 (3), p.e0229041-e0229041
Main Authors: Encarnacion-Rivera, Lucas, Foltz, Steven, Hartzell, H Criss, Choo, Hyojung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83
cites cdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83
container_end_page e0229041
container_issue 3
container_start_page e0229041
container_title PloS one
container_volume 15
creator Encarnacion-Rivera, Lucas
Foltz, Steven
Hartzell, H Criss
Choo, Hyojung
description Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs. Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.
doi_str_mv 10.1371/journal.pone.0229041
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2371449855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616258555</galeid><doaj_id>oai_doaj_org_article_1a0000fdbc7d46818924297362257edb</doaj_id><sourcerecordid>A616258555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsVsfcrC5QFpVFFIVVeJ0a00SJ-uVEy-2AyxPj8Om1Qb1guQi1vibfzx_PFH0FKMVpjk-25rB9qBXO9PLFSKEowTfi04xp2SZEUTvH61PokfObRFKKcuyh9EJJZgikpDTyH_cG2ca_yZe9zEM3nTgZR13g6u0jDfKeaNNu48hlNo75WJvjI4Hp_o27qDaqF7GWoLtxwDo1ljlN108eKXV7zF2UVwWZ0UHrbyMx0I_wcrH0YMGtJNPpu8i-nrx7sv5h-XV9fvifH21rDJO_LKuapQlCclkiSTHNWpYWpIM0TQlnCUEOEhGcNNAQxgkOctLWVZN2GIlxyWji-j5QXenjROTYU6QYF-ScJamgSgORG1gK3ZWdWD3woASfwPGtgKsV8ELgQGFp6nLKq-TjGHGg4E8pxkhaS7rMmi9naoNZSfrSvbegp6Jznd6tRGt-SFylKYstLWIXk0C1nwfpPOiU66SWkMvzXA4N0s5peO5X_yD3t3dRLUQGlB9Y0LdahQV6wxnJA3QSK3uoMJby05V4XY1KsRnCa9nCYHx8pdvYXBOFJ8__T97_W3OvjxiNxK03zijw10yvZuDyQGsrHHOyubWZIzEOBw3bohxOMQ0HCHt2fEPuk26mQb6B8hlCjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371449855</pqid></control><display><type>article</type><title>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</title><source>Open Access: PubMed Central</source><source>Access via ProQuest (Open Access)</source><creator>Encarnacion-Rivera, Lucas ; Foltz, Steven ; Hartzell, H Criss ; Choo, Hyojung</creator><contributor>Abraham, Thomas</contributor><creatorcontrib>Encarnacion-Rivera, Lucas ; Foltz, Steven ; Hartzell, H Criss ; Choo, Hyojung ; Abraham, Thomas</creatorcontrib><description>Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is &gt;10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs. Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0229041</identifier><identifier>PMID: 32130242</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging ; Algorithms ; Anatomy, Cross-Sectional - methods ; Animals ; Antibodies ; Automation ; Biology ; Biology and Life Sciences ; Cell Size ; Computer and Information Sciences ; Computer programs ; Data mining ; Diseases ; Economic indicators ; Fluorescence ; High-Throughput Screening Assays - methods ; Histological Techniques - methods ; Histology ; Image Processing, Computer-Assisted - methods ; Image quality ; Isoforms ; Laminin ; Learning algorithms ; Machine Learning ; Medicine ; Medicine and Health Sciences ; Metabolism ; Methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle contraction ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - pathology ; Muscle function ; Muscle proteins ; Muscle, Skeletal - cytology ; Muscle, Skeletal - pathology ; Muscles ; Musculoskeletal system ; Myopathy ; Myosin ; Neural networks ; Novels ; Open access ; Physiological aspects ; Physiology ; Reproducibility of Results ; Research and Analysis Methods ; Skeletal muscle ; Software ; Time ; Watersheds</subject><ispartof>PloS one, 2020-03, Vol.15 (3), p.e0229041-e0229041</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Encarnacion-Rivera et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Encarnacion-Rivera et al 2020 Encarnacion-Rivera et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</citedby><cites>FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</cites><orcidid>0000-0002-6280-0332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2371449855/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2371449855?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32130242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abraham, Thomas</contributor><creatorcontrib>Encarnacion-Rivera, Lucas</creatorcontrib><creatorcontrib>Foltz, Steven</creatorcontrib><creatorcontrib>Hartzell, H Criss</creatorcontrib><creatorcontrib>Choo, Hyojung</creatorcontrib><title>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is &gt;10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs. Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Anatomy, Cross-Sectional - methods</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Automation</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell Size</subject><subject>Computer and Information Sciences</subject><subject>Computer programs</subject><subject>Data mining</subject><subject>Diseases</subject><subject>Economic indicators</subject><subject>Fluorescence</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Histological Techniques - methods</subject><subject>Histology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Isoforms</subject><subject>Laminin</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscle contraction</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle function</subject><subject>Muscle proteins</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myopathy</subject><subject>Myosin</subject><subject>Neural networks</subject><subject>Novels</subject><subject>Open access</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Skeletal muscle</subject><subject>Software</subject><subject>Time</subject><subject>Watersheds</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsVsfcrC5QFpVFFIVVeJ0a00SJ-uVEy-2AyxPj8Om1Qb1guQi1vibfzx_PFH0FKMVpjk-25rB9qBXO9PLFSKEowTfi04xp2SZEUTvH61PokfObRFKKcuyh9EJJZgikpDTyH_cG2ca_yZe9zEM3nTgZR13g6u0jDfKeaNNu48hlNo75WJvjI4Hp_o27qDaqF7GWoLtxwDo1ljlN108eKXV7zF2UVwWZ0UHrbyMx0I_wcrH0YMGtJNPpu8i-nrx7sv5h-XV9fvifH21rDJO_LKuapQlCclkiSTHNWpYWpIM0TQlnCUEOEhGcNNAQxgkOctLWVZN2GIlxyWji-j5QXenjROTYU6QYF-ScJamgSgORG1gK3ZWdWD3woASfwPGtgKsV8ELgQGFp6nLKq-TjGHGg4E8pxkhaS7rMmi9naoNZSfrSvbegp6Jznd6tRGt-SFylKYstLWIXk0C1nwfpPOiU66SWkMvzXA4N0s5peO5X_yD3t3dRLUQGlB9Y0LdahQV6wxnJA3QSK3uoMJby05V4XY1KsRnCa9nCYHx8pdvYXBOFJ8__T97_W3OvjxiNxK03zijw10yvZuDyQGsrHHOyubWZIzEOBw3bohxOMQ0HCHt2fEPuk26mQb6B8hlCjg</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Encarnacion-Rivera, Lucas</creator><creator>Foltz, Steven</creator><creator>Hartzell, H Criss</creator><creator>Choo, Hyojung</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6280-0332</orcidid></search><sort><creationdate>20200304</creationdate><title>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</title><author>Encarnacion-Rivera, Lucas ; Foltz, Steven ; Hartzell, H Criss ; Choo, Hyojung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Anatomy, Cross-Sectional - methods</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Automation</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell Size</topic><topic>Computer and Information Sciences</topic><topic>Computer programs</topic><topic>Data mining</topic><topic>Diseases</topic><topic>Economic indicators</topic><topic>Fluorescence</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Histological Techniques - methods</topic><topic>Histology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Isoforms</topic><topic>Laminin</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscle contraction</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle function</topic><topic>Muscle proteins</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myopathy</topic><topic>Myosin</topic><topic>Neural networks</topic><topic>Novels</topic><topic>Open access</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Skeletal muscle</topic><topic>Software</topic><topic>Time</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Encarnacion-Rivera, Lucas</creatorcontrib><creatorcontrib>Foltz, Steven</creatorcontrib><creatorcontrib>Hartzell, H Criss</creatorcontrib><creatorcontrib>Choo, Hyojung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Encarnacion-Rivera, Lucas</au><au>Foltz, Steven</au><au>Hartzell, H Criss</au><au>Choo, Hyojung</au><au>Abraham, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>e0229041</spage><epage>e0229041</epage><pages>e0229041-e0229041</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is &gt;10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs. Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32130242</pmid><doi>10.1371/journal.pone.0229041</doi><tpages>e0229041</tpages><orcidid>https://orcid.org/0000-0002-6280-0332</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-03, Vol.15 (3), p.e0229041-e0229041
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2371449855
source Open Access: PubMed Central; Access via ProQuest (Open Access)
subjects Aging
Algorithms
Anatomy, Cross-Sectional - methods
Animals
Antibodies
Automation
Biology
Biology and Life Sciences
Cell Size
Computer and Information Sciences
Computer programs
Data mining
Diseases
Economic indicators
Fluorescence
High-Throughput Screening Assays - methods
Histological Techniques - methods
Histology
Image Processing, Computer-Assisted - methods
Image quality
Isoforms
Laminin
Learning algorithms
Machine Learning
Medicine
Medicine and Health Sciences
Metabolism
Methods
Mice
Mice, Inbred C57BL
Mice, Transgenic
Muscle contraction
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - pathology
Muscle function
Muscle proteins
Muscle, Skeletal - cytology
Muscle, Skeletal - pathology
Muscles
Musculoskeletal system
Myopathy
Myosin
Neural networks
Novels
Open access
Physiological aspects
Physiology
Reproducibility of Results
Research and Analysis Methods
Skeletal muscle
Software
Time
Watersheds
title Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myosoft:%20An%20automated%20muscle%20histology%20analysis%20tool%20using%20machine%20learning%20algorithm%20utilizing%20FIJI/ImageJ%20software&rft.jtitle=PloS%20one&rft.au=Encarnacion-Rivera,%20Lucas&rft.date=2020-03-04&rft.volume=15&rft.issue=3&rft.spage=e0229041&rft.epage=e0229041&rft.pages=e0229041-e0229041&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0229041&rft_dat=%3Cgale_plos_%3EA616258555%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371449855&rft_id=info:pmid/32130242&rft_galeid=A616258555&rfr_iscdi=true