Loading…
Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software
Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. Myosoft provides an...
Saved in:
Published in: | PloS one 2020-03, Vol.15 (3), p.e0229041-e0229041 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83 |
container_end_page | e0229041 |
container_issue | 3 |
container_start_page | e0229041 |
container_title | PloS one |
container_volume | 15 |
creator | Encarnacion-Rivera, Lucas Foltz, Steven Hartzell, H Criss Choo, Hyojung |
description | Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles.
Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs.
Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub. |
doi_str_mv | 10.1371/journal.pone.0229041 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2371449855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616258555</galeid><doaj_id>oai_doaj_org_article_1a0000fdbc7d46818924297362257edb</doaj_id><sourcerecordid>A616258555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsVsfcrC5QFpVFFIVVeJ0a00SJ-uVEy-2AyxPj8Om1Qb1guQi1vibfzx_PFH0FKMVpjk-25rB9qBXO9PLFSKEowTfi04xp2SZEUTvH61PokfObRFKKcuyh9EJJZgikpDTyH_cG2ca_yZe9zEM3nTgZR13g6u0jDfKeaNNu48hlNo75WJvjI4Hp_o27qDaqF7GWoLtxwDo1ljlN108eKXV7zF2UVwWZ0UHrbyMx0I_wcrH0YMGtJNPpu8i-nrx7sv5h-XV9fvifH21rDJO_LKuapQlCclkiSTHNWpYWpIM0TQlnCUEOEhGcNNAQxgkOctLWVZN2GIlxyWji-j5QXenjROTYU6QYF-ScJamgSgORG1gK3ZWdWD3woASfwPGtgKsV8ELgQGFp6nLKq-TjGHGg4E8pxkhaS7rMmi9naoNZSfrSvbegp6Jznd6tRGt-SFylKYstLWIXk0C1nwfpPOiU66SWkMvzXA4N0s5peO5X_yD3t3dRLUQGlB9Y0LdahQV6wxnJA3QSK3uoMJby05V4XY1KsRnCa9nCYHx8pdvYXBOFJ8__T97_W3OvjxiNxK03zijw10yvZuDyQGsrHHOyubWZIzEOBw3bohxOMQ0HCHt2fEPuk26mQb6B8hlCjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371449855</pqid></control><display><type>article</type><title>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</title><source>Open Access: PubMed Central</source><source>Access via ProQuest (Open Access)</source><creator>Encarnacion-Rivera, Lucas ; Foltz, Steven ; Hartzell, H Criss ; Choo, Hyojung</creator><contributor>Abraham, Thomas</contributor><creatorcontrib>Encarnacion-Rivera, Lucas ; Foltz, Steven ; Hartzell, H Criss ; Choo, Hyojung ; Abraham, Thomas</creatorcontrib><description>Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles.
Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs.
Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0229041</identifier><identifier>PMID: 32130242</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging ; Algorithms ; Anatomy, Cross-Sectional - methods ; Animals ; Antibodies ; Automation ; Biology ; Biology and Life Sciences ; Cell Size ; Computer and Information Sciences ; Computer programs ; Data mining ; Diseases ; Economic indicators ; Fluorescence ; High-Throughput Screening Assays - methods ; Histological Techniques - methods ; Histology ; Image Processing, Computer-Assisted - methods ; Image quality ; Isoforms ; Laminin ; Learning algorithms ; Machine Learning ; Medicine ; Medicine and Health Sciences ; Metabolism ; Methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle contraction ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - pathology ; Muscle function ; Muscle proteins ; Muscle, Skeletal - cytology ; Muscle, Skeletal - pathology ; Muscles ; Musculoskeletal system ; Myopathy ; Myosin ; Neural networks ; Novels ; Open access ; Physiological aspects ; Physiology ; Reproducibility of Results ; Research and Analysis Methods ; Skeletal muscle ; Software ; Time ; Watersheds</subject><ispartof>PloS one, 2020-03, Vol.15 (3), p.e0229041-e0229041</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Encarnacion-Rivera et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Encarnacion-Rivera et al 2020 Encarnacion-Rivera et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</citedby><cites>FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</cites><orcidid>0000-0002-6280-0332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2371449855/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2371449855?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32130242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abraham, Thomas</contributor><creatorcontrib>Encarnacion-Rivera, Lucas</creatorcontrib><creatorcontrib>Foltz, Steven</creatorcontrib><creatorcontrib>Hartzell, H Criss</creatorcontrib><creatorcontrib>Choo, Hyojung</creatorcontrib><title>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles.
Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs.
Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Anatomy, Cross-Sectional - methods</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Automation</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell Size</subject><subject>Computer and Information Sciences</subject><subject>Computer programs</subject><subject>Data mining</subject><subject>Diseases</subject><subject>Economic indicators</subject><subject>Fluorescence</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Histological Techniques - methods</subject><subject>Histology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Isoforms</subject><subject>Laminin</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscle contraction</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle function</subject><subject>Muscle proteins</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myopathy</subject><subject>Myosin</subject><subject>Neural networks</subject><subject>Novels</subject><subject>Open access</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Skeletal muscle</subject><subject>Software</subject><subject>Time</subject><subject>Watersheds</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEomXhDRBEQkJwsVsfcrC5QFpVFFIVVeJ0a00SJ-uVEy-2AyxPj8Om1Qb1guQi1vibfzx_PFH0FKMVpjk-25rB9qBXO9PLFSKEowTfi04xp2SZEUTvH61PokfObRFKKcuyh9EJJZgikpDTyH_cG2ca_yZe9zEM3nTgZR13g6u0jDfKeaNNu48hlNo75WJvjI4Hp_o27qDaqF7GWoLtxwDo1ljlN108eKXV7zF2UVwWZ0UHrbyMx0I_wcrH0YMGtJNPpu8i-nrx7sv5h-XV9fvifH21rDJO_LKuapQlCclkiSTHNWpYWpIM0TQlnCUEOEhGcNNAQxgkOctLWVZN2GIlxyWji-j5QXenjROTYU6QYF-ScJamgSgORG1gK3ZWdWD3woASfwPGtgKsV8ELgQGFp6nLKq-TjGHGg4E8pxkhaS7rMmi9naoNZSfrSvbegp6Jznd6tRGt-SFylKYstLWIXk0C1nwfpPOiU66SWkMvzXA4N0s5peO5X_yD3t3dRLUQGlB9Y0LdahQV6wxnJA3QSK3uoMJby05V4XY1KsRnCa9nCYHx8pdvYXBOFJ8__T97_W3OvjxiNxK03zijw10yvZuDyQGsrHHOyubWZIzEOBw3bohxOMQ0HCHt2fEPuk26mQb6B8hlCjg</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Encarnacion-Rivera, Lucas</creator><creator>Foltz, Steven</creator><creator>Hartzell, H Criss</creator><creator>Choo, Hyojung</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6280-0332</orcidid></search><sort><creationdate>20200304</creationdate><title>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</title><author>Encarnacion-Rivera, Lucas ; Foltz, Steven ; Hartzell, H Criss ; Choo, Hyojung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Anatomy, Cross-Sectional - methods</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Automation</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell Size</topic><topic>Computer and Information Sciences</topic><topic>Computer programs</topic><topic>Data mining</topic><topic>Diseases</topic><topic>Economic indicators</topic><topic>Fluorescence</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Histological Techniques - methods</topic><topic>Histology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Isoforms</topic><topic>Laminin</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscle contraction</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle function</topic><topic>Muscle proteins</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myopathy</topic><topic>Myosin</topic><topic>Neural networks</topic><topic>Novels</topic><topic>Open access</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Skeletal muscle</topic><topic>Software</topic><topic>Time</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Encarnacion-Rivera, Lucas</creatorcontrib><creatorcontrib>Foltz, Steven</creatorcontrib><creatorcontrib>Hartzell, H Criss</creatorcontrib><creatorcontrib>Choo, Hyojung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Encarnacion-Rivera, Lucas</au><au>Foltz, Steven</au><au>Hartzell, H Criss</au><au>Choo, Hyojung</au><au>Abraham, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>e0229041</spage><epage>e0229041</epage><pages>e0229041-e0229041</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles.
Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs.
Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32130242</pmid><doi>10.1371/journal.pone.0229041</doi><tpages>e0229041</tpages><orcidid>https://orcid.org/0000-0002-6280-0332</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-03, Vol.15 (3), p.e0229041-e0229041 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2371449855 |
source | Open Access: PubMed Central; Access via ProQuest (Open Access) |
subjects | Aging Algorithms Anatomy, Cross-Sectional - methods Animals Antibodies Automation Biology Biology and Life Sciences Cell Size Computer and Information Sciences Computer programs Data mining Diseases Economic indicators Fluorescence High-Throughput Screening Assays - methods Histological Techniques - methods Histology Image Processing, Computer-Assisted - methods Image quality Isoforms Laminin Learning algorithms Machine Learning Medicine Medicine and Health Sciences Metabolism Methods Mice Mice, Inbred C57BL Mice, Transgenic Muscle contraction Muscle Fibers, Skeletal - cytology Muscle Fibers, Skeletal - pathology Muscle function Muscle proteins Muscle, Skeletal - cytology Muscle, Skeletal - pathology Muscles Musculoskeletal system Myopathy Myosin Neural networks Novels Open access Physiological aspects Physiology Reproducibility of Results Research and Analysis Methods Skeletal muscle Software Time Watersheds |
title | Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myosoft:%20An%20automated%20muscle%20histology%20analysis%20tool%20using%20machine%20learning%20algorithm%20utilizing%20FIJI/ImageJ%20software&rft.jtitle=PloS%20one&rft.au=Encarnacion-Rivera,%20Lucas&rft.date=2020-03-04&rft.volume=15&rft.issue=3&rft.spage=e0229041&rft.epage=e0229041&rft.pages=e0229041-e0229041&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0229041&rft_dat=%3Cgale_plos_%3EA616258555%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-dcd064426eb0e91d0f85b26035529842a9ae821ffaf28a4787bebcf9848b91b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371449855&rft_id=info:pmid/32130242&rft_galeid=A616258555&rfr_iscdi=true |