Loading…

Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons

Neuromodulators such as monoamines are often expressed in neurons that also release at least one fast-acting neurotransmitter. The release of a combination of transmitters provides both "classical" and "modulatory" signals that could produce diverse and/or complementary effects i...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2020-02, Vol.16 (2), p.e1008609-e1008609
Main Authors: Sherer, Lewis M, Catudio Garrett, Elizabeth, Morgan, Hannah R, Brewer, Edmond D, Sirrs, Lucy A, Shearin, Harold K, Williams, Jessica L, McCabe, Brian D, Stowers, R Steven, Certel, Sarah J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuromodulators such as monoamines are often expressed in neurons that also release at least one fast-acting neurotransmitter. The release of a combination of transmitters provides both "classical" and "modulatory" signals that could produce diverse and/or complementary effects in associated circuits. Here, we establish that the majority of Drosophila octopamine (OA) neurons are also glutamatergic and identify the individual contributions of each neurotransmitter on sex-specific behaviors. Males without OA display low levels of aggression and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but without a concurrent increase in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT puncta differ in localization suggesting spatial differences in OA signaling. Our findings establish a previously undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples aggression from OA-dependent courtship-related behavior. These results indicate that dual neurotransmission can increase the efficacy of individual neurotransmitters while maintaining unique functions within a multi-functional social behavior neuronal network.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1008609