Loading…

Deep Learning-driven research for drug discovery: Tackling Malaria

Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2020-02, Vol.16 (2), p.e1007025-e1007025
Main Authors: Neves, Bruno J, Braga, Rodolpho C, Alves, Vinicius M, Lima, Marília N N, Cassiano, Gustavo C, Muratov, Eugene N, Costa, Fabio T M, Andrade, Carolina Horta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983
cites cdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983
container_end_page e1007025
container_issue 2
container_start_page e1007025
container_title PLoS computational biology
container_volume 16
creator Neves, Bruno J
Braga, Rodolpho C
Alves, Vinicius M
Lima, Marília N N
Cassiano, Gustavo C
Muratov, Eugene N
Costa, Fabio T M
Andrade, Carolina Horta
description Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50
doi_str_mv 10.1371/journal.pcbi.1007025
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2377705325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615716269</galeid><doaj_id>oai_doaj_org_article_9db59f29aff44242bd02821ded76b5c5</doaj_id><sourcerecordid>A615716269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLP520gNSKV8rLSBBOVuOPUm9ZOPFTlb03-OwadVFvSAfbI2feWfe0WTZU4wWmEr8eu3H0OtusTW1W2CEJCL8XnaMOaeFpLy8f-t9lD2KcY1QelbiYXZECRIVKflx9vYdwDZfgQ6969vCBreDPg8QU8Rc5o0PuQ1jm1sXjd9BuDrNL7T52SU4_6w7HZx-nD1odBfhyXyfZD8-vL84_1Ssvn5cnp-tCiMEHgoiGBeUVYKWlRV1DdSUVLNGQGqKa8CGU8wYqUtbM4SMBs44RVgyEMCqkp5kz_e6285HNduPilApJeKU8EQs94T1eq22wW10uFJeO_U34EOrdBic6UBVtuZVQyrdNKlmqmoRKQm2YKWouZm03szVxnoD1kA_BN0diB7-9O5StX6nJGIlRSQJvJwFgv81QhzUJs0Quk734Mepb15yWSEiEvriH_RudzPV6mTA9Y1Pdc0kqs4E5hILIqpELe6g0rGwccb30LgUP0h4dZCQmAF-D60eY1TL79_-g_1yyLI9a4KPMUBzMzuM1LTB1ybVtMFq3uCU9uz23G-SrleW_gFETunH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377705325</pqid></control><display><type>article</type><title>Deep Learning-driven research for drug discovery: Tackling Malaria</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Neves, Bruno J ; Braga, Rodolpho C ; Alves, Vinicius M ; Lima, Marília N N ; Cassiano, Gustavo C ; Muratov, Eugene N ; Costa, Fabio T M ; Andrade, Carolina Horta</creator><contributor>Morris, Quaid</contributor><creatorcontrib>Neves, Bruno J ; Braga, Rodolpho C ; Alves, Vinicius M ; Lima, Marília N N ; Cassiano, Gustavo C ; Muratov, Eugene N ; Costa, Fabio T M ; Andrade, Carolina Horta ; Morris, Quaid</creatorcontrib><description>Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 &lt;500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007025</identifier><identifier>PMID: 32069285</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antimalarial agents ; Antimalarials ; Antimalarials - chemistry ; Antimalarials - therapeutic use ; Antimicrobial agents ; Antiprotozoal agents ; Artemisinin ; Asexuality ; Biology ; Biology and Life Sciences ; Cells (Biology) ; Chemical compounds ; Communicable diseases ; Computer and Information Sciences ; Computer applications ; Cytotoxicity ; Datasets ; Deep Learning ; Diseases ; Drug development ; Drug discovery ; Drug Discovery - methods ; Drug resistance ; Drug therapy ; Drugs ; Evolution ; Fibroblasts ; Global health ; Health ; Humans ; Immunology ; Infectious diseases ; Laboratories ; Machine learning ; Malaria ; Malaria - drug therapy ; Mammalian cells ; Medicine and Health Sciences ; Neural networks ; Parasite resistance ; Pharmacy ; Plasmodium falciparum ; Pyrimethamine ; Quantitative Structure-Activity Relationship ; Reproducibility of Results ; Software ; Statistical methods ; Structure-Activity Relationship ; Structure-activity relationships ; Supervision ; Toxicity ; Tropical diseases ; Vector-borne diseases ; World health</subject><ispartof>PLoS computational biology, 2020-02, Vol.16 (2), p.e1007025-e1007025</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Neves et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Neves et al 2020 Neves et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</citedby><cites>FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</cites><orcidid>0000-0002-6182-1748 ; 0000-0003-0101-1492 ; 0000-0002-1309-8743 ; 0000-0002-7394-0031 ; 0000-0003-4616-7036 ; 0000-0001-9969-7300 ; 0000-0003-3814-3464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2377705325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2377705325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32069285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Morris, Quaid</contributor><creatorcontrib>Neves, Bruno J</creatorcontrib><creatorcontrib>Braga, Rodolpho C</creatorcontrib><creatorcontrib>Alves, Vinicius M</creatorcontrib><creatorcontrib>Lima, Marília N N</creatorcontrib><creatorcontrib>Cassiano, Gustavo C</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Costa, Fabio T M</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><title>Deep Learning-driven research for drug discovery: Tackling Malaria</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 &lt;500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.</description><subject>Antimalarial agents</subject><subject>Antimalarials</subject><subject>Antimalarials - chemistry</subject><subject>Antimalarials - therapeutic use</subject><subject>Antimicrobial agents</subject><subject>Antiprotozoal agents</subject><subject>Artemisinin</subject><subject>Asexuality</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cells (Biology)</subject><subject>Chemical compounds</subject><subject>Communicable diseases</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Cytotoxicity</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Diseases</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Drug Discovery - methods</subject><subject>Drug resistance</subject><subject>Drug therapy</subject><subject>Drugs</subject><subject>Evolution</subject><subject>Fibroblasts</subject><subject>Global health</subject><subject>Health</subject><subject>Humans</subject><subject>Immunology</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Malaria</subject><subject>Malaria - drug therapy</subject><subject>Mammalian cells</subject><subject>Medicine and Health Sciences</subject><subject>Neural networks</subject><subject>Parasite resistance</subject><subject>Pharmacy</subject><subject>Plasmodium falciparum</subject><subject>Pyrimethamine</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Structure-Activity Relationship</subject><subject>Structure-activity relationships</subject><subject>Supervision</subject><subject>Toxicity</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>World health</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLP520gNSKV8rLSBBOVuOPUm9ZOPFTlb03-OwadVFvSAfbI2feWfe0WTZU4wWmEr8eu3H0OtusTW1W2CEJCL8XnaMOaeFpLy8f-t9lD2KcY1QelbiYXZECRIVKflx9vYdwDZfgQ6969vCBreDPg8QU8Rc5o0PuQ1jm1sXjd9BuDrNL7T52SU4_6w7HZx-nD1odBfhyXyfZD8-vL84_1Ssvn5cnp-tCiMEHgoiGBeUVYKWlRV1DdSUVLNGQGqKa8CGU8wYqUtbM4SMBs44RVgyEMCqkp5kz_e6285HNduPilApJeKU8EQs94T1eq22wW10uFJeO_U34EOrdBic6UBVtuZVQyrdNKlmqmoRKQm2YKWouZm03szVxnoD1kA_BN0diB7-9O5StX6nJGIlRSQJvJwFgv81QhzUJs0Quk734Mepb15yWSEiEvriH_RudzPV6mTA9Y1Pdc0kqs4E5hILIqpELe6g0rGwccb30LgUP0h4dZCQmAF-D60eY1TL79_-g_1yyLI9a4KPMUBzMzuM1LTB1ybVtMFq3uCU9uz23G-SrleW_gFETunH</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Neves, Bruno J</creator><creator>Braga, Rodolpho C</creator><creator>Alves, Vinicius M</creator><creator>Lima, Marília N N</creator><creator>Cassiano, Gustavo C</creator><creator>Muratov, Eugene N</creator><creator>Costa, Fabio T M</creator><creator>Andrade, Carolina Horta</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6182-1748</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0002-7394-0031</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0001-9969-7300</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid></search><sort><creationdate>20200218</creationdate><title>Deep Learning-driven research for drug discovery: Tackling Malaria</title><author>Neves, Bruno J ; Braga, Rodolpho C ; Alves, Vinicius M ; Lima, Marília N N ; Cassiano, Gustavo C ; Muratov, Eugene N ; Costa, Fabio T M ; Andrade, Carolina Horta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antimalarial agents</topic><topic>Antimalarials</topic><topic>Antimalarials - chemistry</topic><topic>Antimalarials - therapeutic use</topic><topic>Antimicrobial agents</topic><topic>Antiprotozoal agents</topic><topic>Artemisinin</topic><topic>Asexuality</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cells (Biology)</topic><topic>Chemical compounds</topic><topic>Communicable diseases</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Cytotoxicity</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Diseases</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Drug Discovery - methods</topic><topic>Drug resistance</topic><topic>Drug therapy</topic><topic>Drugs</topic><topic>Evolution</topic><topic>Fibroblasts</topic><topic>Global health</topic><topic>Health</topic><topic>Humans</topic><topic>Immunology</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Malaria</topic><topic>Malaria - drug therapy</topic><topic>Mammalian cells</topic><topic>Medicine and Health Sciences</topic><topic>Neural networks</topic><topic>Parasite resistance</topic><topic>Pharmacy</topic><topic>Plasmodium falciparum</topic><topic>Pyrimethamine</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Structure-Activity Relationship</topic><topic>Structure-activity relationships</topic><topic>Supervision</topic><topic>Toxicity</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>World health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neves, Bruno J</creatorcontrib><creatorcontrib>Braga, Rodolpho C</creatorcontrib><creatorcontrib>Alves, Vinicius M</creatorcontrib><creatorcontrib>Lima, Marília N N</creatorcontrib><creatorcontrib>Cassiano, Gustavo C</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Costa, Fabio T M</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neves, Bruno J</au><au>Braga, Rodolpho C</au><au>Alves, Vinicius M</au><au>Lima, Marília N N</au><au>Cassiano, Gustavo C</au><au>Muratov, Eugene N</au><au>Costa, Fabio T M</au><au>Andrade, Carolina Horta</au><au>Morris, Quaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-driven research for drug discovery: Tackling Malaria</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>e1007025</spage><epage>e1007025</epage><pages>e1007025-e1007025</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 &lt;500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32069285</pmid><doi>10.1371/journal.pcbi.1007025</doi><orcidid>https://orcid.org/0000-0002-6182-1748</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0002-7394-0031</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0001-9969-7300</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-02, Vol.16 (2), p.e1007025-e1007025
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2377705325
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Antimalarial agents
Antimalarials
Antimalarials - chemistry
Antimalarials - therapeutic use
Antimicrobial agents
Antiprotozoal agents
Artemisinin
Asexuality
Biology
Biology and Life Sciences
Cells (Biology)
Chemical compounds
Communicable diseases
Computer and Information Sciences
Computer applications
Cytotoxicity
Datasets
Deep Learning
Diseases
Drug development
Drug discovery
Drug Discovery - methods
Drug resistance
Drug therapy
Drugs
Evolution
Fibroblasts
Global health
Health
Humans
Immunology
Infectious diseases
Laboratories
Machine learning
Malaria
Malaria - drug therapy
Mammalian cells
Medicine and Health Sciences
Neural networks
Parasite resistance
Pharmacy
Plasmodium falciparum
Pyrimethamine
Quantitative Structure-Activity Relationship
Reproducibility of Results
Software
Statistical methods
Structure-Activity Relationship
Structure-activity relationships
Supervision
Toxicity
Tropical diseases
Vector-borne diseases
World health
title Deep Learning-driven research for drug discovery: Tackling Malaria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-driven%20research%20for%20drug%20discovery:%20Tackling%20Malaria&rft.jtitle=PLoS%20computational%20biology&rft.au=Neves,%20Bruno%20J&rft.date=2020-02-18&rft.volume=16&rft.issue=2&rft.spage=e1007025&rft.epage=e1007025&rft.pages=e1007025-e1007025&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007025&rft_dat=%3Cgale_plos_%3EA615716269%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377705325&rft_id=info:pmid/32069285&rft_galeid=A615716269&rfr_iscdi=true