Loading…
Deep Learning-driven research for drug discovery: Tackling Malaria
Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the...
Saved in:
Published in: | PLoS computational biology 2020-02, Vol.16 (2), p.e1007025-e1007025 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983 |
---|---|
cites | cdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983 |
container_end_page | e1007025 |
container_issue | 2 |
container_start_page | e1007025 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Neves, Bruno J Braga, Rodolpho C Alves, Vinicius M Lima, Marília N N Cassiano, Gustavo C Muratov, Eugene N Costa, Fabio T M Andrade, Carolina Horta |
description | Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 |
doi_str_mv | 10.1371/journal.pcbi.1007025 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2377705325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615716269</galeid><doaj_id>oai_doaj_org_article_9db59f29aff44242bd02821ded76b5c5</doaj_id><sourcerecordid>A615716269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLP520gNSKV8rLSBBOVuOPUm9ZOPFTlb03-OwadVFvSAfbI2feWfe0WTZU4wWmEr8eu3H0OtusTW1W2CEJCL8XnaMOaeFpLy8f-t9lD2KcY1QelbiYXZECRIVKflx9vYdwDZfgQ6969vCBreDPg8QU8Rc5o0PuQ1jm1sXjd9BuDrNL7T52SU4_6w7HZx-nD1odBfhyXyfZD8-vL84_1Ssvn5cnp-tCiMEHgoiGBeUVYKWlRV1DdSUVLNGQGqKa8CGU8wYqUtbM4SMBs44RVgyEMCqkp5kz_e6285HNduPilApJeKU8EQs94T1eq22wW10uFJeO_U34EOrdBic6UBVtuZVQyrdNKlmqmoRKQm2YKWouZm03szVxnoD1kA_BN0diB7-9O5StX6nJGIlRSQJvJwFgv81QhzUJs0Quk734Mepb15yWSEiEvriH_RudzPV6mTA9Y1Pdc0kqs4E5hILIqpELe6g0rGwccb30LgUP0h4dZCQmAF-D60eY1TL79_-g_1yyLI9a4KPMUBzMzuM1LTB1ybVtMFq3uCU9uz23G-SrleW_gFETunH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377705325</pqid></control><display><type>article</type><title>Deep Learning-driven research for drug discovery: Tackling Malaria</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Neves, Bruno J ; Braga, Rodolpho C ; Alves, Vinicius M ; Lima, Marília N N ; Cassiano, Gustavo C ; Muratov, Eugene N ; Costa, Fabio T M ; Andrade, Carolina Horta</creator><contributor>Morris, Quaid</contributor><creatorcontrib>Neves, Bruno J ; Braga, Rodolpho C ; Alves, Vinicius M ; Lima, Marília N N ; Cassiano, Gustavo C ; Muratov, Eugene N ; Costa, Fabio T M ; Andrade, Carolina Horta ; Morris, Quaid</creatorcontrib><description>Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007025</identifier><identifier>PMID: 32069285</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antimalarial agents ; Antimalarials ; Antimalarials - chemistry ; Antimalarials - therapeutic use ; Antimicrobial agents ; Antiprotozoal agents ; Artemisinin ; Asexuality ; Biology ; Biology and Life Sciences ; Cells (Biology) ; Chemical compounds ; Communicable diseases ; Computer and Information Sciences ; Computer applications ; Cytotoxicity ; Datasets ; Deep Learning ; Diseases ; Drug development ; Drug discovery ; Drug Discovery - methods ; Drug resistance ; Drug therapy ; Drugs ; Evolution ; Fibroblasts ; Global health ; Health ; Humans ; Immunology ; Infectious diseases ; Laboratories ; Machine learning ; Malaria ; Malaria - drug therapy ; Mammalian cells ; Medicine and Health Sciences ; Neural networks ; Parasite resistance ; Pharmacy ; Plasmodium falciparum ; Pyrimethamine ; Quantitative Structure-Activity Relationship ; Reproducibility of Results ; Software ; Statistical methods ; Structure-Activity Relationship ; Structure-activity relationships ; Supervision ; Toxicity ; Tropical diseases ; Vector-borne diseases ; World health</subject><ispartof>PLoS computational biology, 2020-02, Vol.16 (2), p.e1007025-e1007025</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Neves et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Neves et al 2020 Neves et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</citedby><cites>FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</cites><orcidid>0000-0002-6182-1748 ; 0000-0003-0101-1492 ; 0000-0002-1309-8743 ; 0000-0002-7394-0031 ; 0000-0003-4616-7036 ; 0000-0001-9969-7300 ; 0000-0003-3814-3464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2377705325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2377705325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32069285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Morris, Quaid</contributor><creatorcontrib>Neves, Bruno J</creatorcontrib><creatorcontrib>Braga, Rodolpho C</creatorcontrib><creatorcontrib>Alves, Vinicius M</creatorcontrib><creatorcontrib>Lima, Marília N N</creatorcontrib><creatorcontrib>Cassiano, Gustavo C</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Costa, Fabio T M</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><title>Deep Learning-driven research for drug discovery: Tackling Malaria</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.</description><subject>Antimalarial agents</subject><subject>Antimalarials</subject><subject>Antimalarials - chemistry</subject><subject>Antimalarials - therapeutic use</subject><subject>Antimicrobial agents</subject><subject>Antiprotozoal agents</subject><subject>Artemisinin</subject><subject>Asexuality</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cells (Biology)</subject><subject>Chemical compounds</subject><subject>Communicable diseases</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Cytotoxicity</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Diseases</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Drug Discovery - methods</subject><subject>Drug resistance</subject><subject>Drug therapy</subject><subject>Drugs</subject><subject>Evolution</subject><subject>Fibroblasts</subject><subject>Global health</subject><subject>Health</subject><subject>Humans</subject><subject>Immunology</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Malaria</subject><subject>Malaria - drug therapy</subject><subject>Mammalian cells</subject><subject>Medicine and Health Sciences</subject><subject>Neural networks</subject><subject>Parasite resistance</subject><subject>Pharmacy</subject><subject>Plasmodium falciparum</subject><subject>Pyrimethamine</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Structure-Activity Relationship</subject><subject>Structure-activity relationships</subject><subject>Supervision</subject><subject>Toxicity</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>World health</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLP520gNSKV8rLSBBOVuOPUm9ZOPFTlb03-OwadVFvSAfbI2feWfe0WTZU4wWmEr8eu3H0OtusTW1W2CEJCL8XnaMOaeFpLy8f-t9lD2KcY1QelbiYXZECRIVKflx9vYdwDZfgQ6969vCBreDPg8QU8Rc5o0PuQ1jm1sXjd9BuDrNL7T52SU4_6w7HZx-nD1odBfhyXyfZD8-vL84_1Ssvn5cnp-tCiMEHgoiGBeUVYKWlRV1DdSUVLNGQGqKa8CGU8wYqUtbM4SMBs44RVgyEMCqkp5kz_e6285HNduPilApJeKU8EQs94T1eq22wW10uFJeO_U34EOrdBic6UBVtuZVQyrdNKlmqmoRKQm2YKWouZm03szVxnoD1kA_BN0diB7-9O5StX6nJGIlRSQJvJwFgv81QhzUJs0Quk734Mepb15yWSEiEvriH_RudzPV6mTA9Y1Pdc0kqs4E5hILIqpELe6g0rGwccb30LgUP0h4dZCQmAF-D60eY1TL79_-g_1yyLI9a4KPMUBzMzuM1LTB1ybVtMFq3uCU9uz23G-SrleW_gFETunH</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Neves, Bruno J</creator><creator>Braga, Rodolpho C</creator><creator>Alves, Vinicius M</creator><creator>Lima, Marília N N</creator><creator>Cassiano, Gustavo C</creator><creator>Muratov, Eugene N</creator><creator>Costa, Fabio T M</creator><creator>Andrade, Carolina Horta</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6182-1748</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0002-7394-0031</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0001-9969-7300</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid></search><sort><creationdate>20200218</creationdate><title>Deep Learning-driven research for drug discovery: Tackling Malaria</title><author>Neves, Bruno J ; Braga, Rodolpho C ; Alves, Vinicius M ; Lima, Marília N N ; Cassiano, Gustavo C ; Muratov, Eugene N ; Costa, Fabio T M ; Andrade, Carolina Horta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antimalarial agents</topic><topic>Antimalarials</topic><topic>Antimalarials - chemistry</topic><topic>Antimalarials - therapeutic use</topic><topic>Antimicrobial agents</topic><topic>Antiprotozoal agents</topic><topic>Artemisinin</topic><topic>Asexuality</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cells (Biology)</topic><topic>Chemical compounds</topic><topic>Communicable diseases</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Cytotoxicity</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Diseases</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Drug Discovery - methods</topic><topic>Drug resistance</topic><topic>Drug therapy</topic><topic>Drugs</topic><topic>Evolution</topic><topic>Fibroblasts</topic><topic>Global health</topic><topic>Health</topic><topic>Humans</topic><topic>Immunology</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Malaria</topic><topic>Malaria - drug therapy</topic><topic>Mammalian cells</topic><topic>Medicine and Health Sciences</topic><topic>Neural networks</topic><topic>Parasite resistance</topic><topic>Pharmacy</topic><topic>Plasmodium falciparum</topic><topic>Pyrimethamine</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Structure-Activity Relationship</topic><topic>Structure-activity relationships</topic><topic>Supervision</topic><topic>Toxicity</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>World health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neves, Bruno J</creatorcontrib><creatorcontrib>Braga, Rodolpho C</creatorcontrib><creatorcontrib>Alves, Vinicius M</creatorcontrib><creatorcontrib>Lima, Marília N N</creatorcontrib><creatorcontrib>Cassiano, Gustavo C</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Costa, Fabio T M</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neves, Bruno J</au><au>Braga, Rodolpho C</au><au>Alves, Vinicius M</au><au>Lima, Marília N N</au><au>Cassiano, Gustavo C</au><au>Muratov, Eugene N</au><au>Costa, Fabio T M</au><au>Andrade, Carolina Horta</au><au>Morris, Quaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-driven research for drug discovery: Tackling Malaria</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>e1007025</spage><epage>e1007025</epage><pages>e1007025-e1007025</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32069285</pmid><doi>10.1371/journal.pcbi.1007025</doi><orcidid>https://orcid.org/0000-0002-6182-1748</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0002-7394-0031</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0001-9969-7300</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-02, Vol.16 (2), p.e1007025-e1007025 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2377705325 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Antimalarial agents Antimalarials Antimalarials - chemistry Antimalarials - therapeutic use Antimicrobial agents Antiprotozoal agents Artemisinin Asexuality Biology Biology and Life Sciences Cells (Biology) Chemical compounds Communicable diseases Computer and Information Sciences Computer applications Cytotoxicity Datasets Deep Learning Diseases Drug development Drug discovery Drug Discovery - methods Drug resistance Drug therapy Drugs Evolution Fibroblasts Global health Health Humans Immunology Infectious diseases Laboratories Machine learning Malaria Malaria - drug therapy Mammalian cells Medicine and Health Sciences Neural networks Parasite resistance Pharmacy Plasmodium falciparum Pyrimethamine Quantitative Structure-Activity Relationship Reproducibility of Results Software Statistical methods Structure-Activity Relationship Structure-activity relationships Supervision Toxicity Tropical diseases Vector-borne diseases World health |
title | Deep Learning-driven research for drug discovery: Tackling Malaria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-driven%20research%20for%20drug%20discovery:%20Tackling%20Malaria&rft.jtitle=PLoS%20computational%20biology&rft.au=Neves,%20Bruno%20J&rft.date=2020-02-18&rft.volume=16&rft.issue=2&rft.spage=e1007025&rft.epage=e1007025&rft.pages=e1007025-e1007025&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007025&rft_dat=%3Cgale_plos_%3EA615716269%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-264563496389d6bbe3c83a4f6e5895ae1c531442b8db400cae54530174e6e4983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377705325&rft_id=info:pmid/32069285&rft_galeid=A615716269&rfr_iscdi=true |