Loading…

Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model

Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-04, Vol.15 (4), p.e0231244-e0231244
Main Authors: Guo, Hua, Wang, Yuqing, Cai, Wei, He, Chengqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance imaging proton density mapping was used to quantify edema 5-55 min after the delivery of L-type CCBs, T- and L-type CCBs, and solvent to a spontaneously hypertensive rat model. Transmission electron microscopy was used to show ultrastructural changes in the myocyte. Analysis of variance showed significant differences among the three groups in mean arterial pressure reduction (F = 246.36, P = 5.75E-25), ultra-early level of edema (ULE) (F = 175.49, P = 5.62E-22), and dose-dependent level of edema (DLE) (F = 199.48, P = 4.28E-23). Compared with the solvent's mean arterial pressure reduction (2.65±6.56±1.64), ULE (1.16±0.09±0.02), and DLE (0.0010±0.0001±0.0000), post hoc tests showed that T- and L-type CCBs had better mean arterial pressure reduction (90.67±11.58±2.90, P = 1.06E-24 vs. 68.34±15.19±3.80, P = 1.76E-12), lower ULE (1.53±0.14±0.04, P = 4.74E-9 vs. 2.08±0.18±0.04, P = 2.68E-22), and lower DLE (0.0025±0.0004±0.0001, P = 1.14E-11 vs. 0.0047±0.0008±0.0002, P = 2.10E-11) than L- type CCBs. Transmission electron microscopy showed that T- and L-type CCBs caused fewer ultrastructural changes in the myocytes after drug delivery than L-type CCBs. T- and L-type CCBs produced less ultra-early and dose-dependent edema, fewer ultrastructural changes in the myocyte, and a greater antihypertensive effect. Proton density mapping combined with arterial cannulation and transmission electron microscopy allowed for quantification of ultra-early and dose-dependent edema, antihypertensive efficacy, and ultrastructural changes in the myocyte. This is important for the evaluation of induced vasodilatory edema.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0231244