Loading…
Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome
Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly lef...
Saved in:
Published in: | PloS one 2018-01, Vol.13 (1), p.e0191885-e0191885 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283 |
container_end_page | e0191885 |
container_issue | 1 |
container_start_page | e0191885 |
container_title | PloS one |
container_volume | 13 |
creator | Sage, Michaël Nadeau, Mathieu Forand-Choinière, Claudia Mousseau, Julien Vandamme, Jonathan Berger, Claire Tremblay-Roy, Jean-Sébastien Tissier, Renaud Micheau, Philippe Fortin-Pellerin, Étienne |
description | Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome.
Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV.
Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p |
doi_str_mv | 10.1371/journal.pone.0191885 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2390640877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d8173c72cfa4c8d8e1a7644a76dc520</doaj_id><sourcerecordid>2390640877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</originalsourceid><addsrcrecordid>eNptUslqHDEQbUJCvCR_EBJBLr7MRFtruQSMyWIw5JKchVpSjzWopbGkNsxH-J_TPdM2dggIqVR676mqeE3zAcE1Ihx92aYxRx3WuxTdGiKJhGhfNadIErxiGJLXz-KT5qyULYQtEYy9bU6wJJxLjE-bh8tSXCk-bkC9dcAPO21qAakHNVUdQPB3o7fg3sXqg64-RTCt4Pp6yGVvxqAzsF6XmoI3oB-jOcB8BBoMybowq0WXop4Fsys7n3VNeT-xSp3uBZR9tDkN7l3zptehuPfLed78-f7t99XP1c2vH9dXlzcr02JWV5xDaR1mRkPR9brDBLcICwYp6xgVVFrRQygwoaSXrpNIMoM7KXvBaNthQc6bT0fdXUhFLZMsChMJGYWC8wlxfUTYpLdql_2g814l7dUhkfJG6Vy9CU4hKxAnhmPTa2qEFQ5pziidNjvVCyetr8tvYzc4a-a56fBC9OVL9Ldqk-5Vy4UgnE4CF4tATnejK1UNvhgXgp7GOhaFpCQQUUhm6Od_oP_vjh5RJqdSsuufikFQze56ZKnZXWpx10T7-LyRJ9Kjnchfk2PQrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390640877</pqid></control><display><type>article</type><title>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Sage, Michaël ; Nadeau, Mathieu ; Forand-Choinière, Claudia ; Mousseau, Julien ; Vandamme, Jonathan ; Berger, Claire ; Tremblay-Roy, Jean-Sébastien ; Tissier, Renaud ; Micheau, Philippe ; Fortin-Pellerin, Étienne</creator><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Sage, Michaël ; Nadeau, Mathieu ; Forand-Choinière, Claudia ; Mousseau, Julien ; Vandamme, Jonathan ; Berger, Claire ; Tremblay-Roy, Jean-Sébastien ; Tissier, Renaud ; Micheau, Philippe ; Fortin-Pellerin, Étienne ; Lionetti, Vincenzo</creatorcontrib><description>Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome.
Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV.
Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p<0.001).
TLV was well tolerated in our neonatal lamb model of severe respiratory distress syndrome and had limited impact on left ventricle diastolic function when compared to conventional mechanical ventilation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0191885</identifier><identifier>PMID: 29377922</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Animals, Newborn ; Arteries ; Biology and Life Sciences ; Blood pressure ; Cardiac output ; Cardiovascular system ; Catheters ; Diastole ; Diastolic pressure ; Disease Models, Animal ; Echocardiography ; Engineering and Technology ; Fluorocarbons - pharmacokinetics ; Heart ; Hemodynamics ; Liquid Ventilation - methods ; Lungs ; Mechanical engineering ; Mechanical ventilation ; Medical instruments ; Medicine and Health Sciences ; Myocardium ; Neonates ; Newborn babies ; Pediatrics ; Perfluorocarbons ; Pharmacology ; Physiology ; Pulmonary arteries ; Pulmonary artery ; Relaxation time ; Respiration ; Respiratory distress syndrome ; Respiratory Distress Syndrome, Newborn - physiopathology ; Respiratory Distress Syndrome, Newborn - therapy ; Sensors ; Sheep ; Stability analysis ; Surfactants ; Thorax ; Time constant ; Ventilation ; Ventilators ; Ventricle ; Ventricular Function, Left</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0191885-e0191885</ispartof><rights>2018 Sage et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Sage et al 2018 Sage et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</citedby><cites>FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</cites><orcidid>0000-0002-1734-3857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2390640877/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2390640877?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29377922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Sage, Michaël</creatorcontrib><creatorcontrib>Nadeau, Mathieu</creatorcontrib><creatorcontrib>Forand-Choinière, Claudia</creatorcontrib><creatorcontrib>Mousseau, Julien</creatorcontrib><creatorcontrib>Vandamme, Jonathan</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>Tremblay-Roy, Jean-Sébastien</creatorcontrib><creatorcontrib>Tissier, Renaud</creatorcontrib><creatorcontrib>Micheau, Philippe</creatorcontrib><creatorcontrib>Fortin-Pellerin, Étienne</creatorcontrib><title>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome.
Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV.
Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p<0.001).
TLV was well tolerated in our neonatal lamb model of severe respiratory distress syndrome and had limited impact on left ventricle diastolic function when compared to conventional mechanical ventilation.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Arteries</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Cardiac output</subject><subject>Cardiovascular system</subject><subject>Catheters</subject><subject>Diastole</subject><subject>Diastolic pressure</subject><subject>Disease Models, Animal</subject><subject>Echocardiography</subject><subject>Engineering and Technology</subject><subject>Fluorocarbons - pharmacokinetics</subject><subject>Heart</subject><subject>Hemodynamics</subject><subject>Liquid Ventilation - methods</subject><subject>Lungs</subject><subject>Mechanical engineering</subject><subject>Mechanical ventilation</subject><subject>Medical instruments</subject><subject>Medicine and Health Sciences</subject><subject>Myocardium</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Pediatrics</subject><subject>Perfluorocarbons</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Relaxation time</subject><subject>Respiration</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome, Newborn - physiopathology</subject><subject>Respiratory Distress Syndrome, Newborn - therapy</subject><subject>Sensors</subject><subject>Sheep</subject><subject>Stability analysis</subject><subject>Surfactants</subject><subject>Thorax</subject><subject>Time constant</subject><subject>Ventilation</subject><subject>Ventilators</subject><subject>Ventricle</subject><subject>Ventricular Function, Left</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUslqHDEQbUJCvCR_EBJBLr7MRFtruQSMyWIw5JKchVpSjzWopbGkNsxH-J_TPdM2dggIqVR676mqeE3zAcE1Ihx92aYxRx3WuxTdGiKJhGhfNadIErxiGJLXz-KT5qyULYQtEYy9bU6wJJxLjE-bh8tSXCk-bkC9dcAPO21qAakHNVUdQPB3o7fg3sXqg64-RTCt4Pp6yGVvxqAzsF6XmoI3oB-jOcB8BBoMybowq0WXop4Fsys7n3VNeT-xSp3uBZR9tDkN7l3zptehuPfLed78-f7t99XP1c2vH9dXlzcr02JWV5xDaR1mRkPR9brDBLcICwYp6xgVVFrRQygwoaSXrpNIMoM7KXvBaNthQc6bT0fdXUhFLZMsChMJGYWC8wlxfUTYpLdql_2g814l7dUhkfJG6Vy9CU4hKxAnhmPTa2qEFQ5pziidNjvVCyetr8tvYzc4a-a56fBC9OVL9Ldqk-5Vy4UgnE4CF4tATnejK1UNvhgXgp7GOhaFpCQQUUhm6Od_oP_vjh5RJqdSsuufikFQze56ZKnZXWpx10T7-LyRJ9Kjnchfk2PQrA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Sage, Michaël</creator><creator>Nadeau, Mathieu</creator><creator>Forand-Choinière, Claudia</creator><creator>Mousseau, Julien</creator><creator>Vandamme, Jonathan</creator><creator>Berger, Claire</creator><creator>Tremblay-Roy, Jean-Sébastien</creator><creator>Tissier, Renaud</creator><creator>Micheau, Philippe</creator><creator>Fortin-Pellerin, Étienne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1734-3857</orcidid></search><sort><creationdate>20180101</creationdate><title>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</title><author>Sage, Michaël ; Nadeau, Mathieu ; Forand-Choinière, Claudia ; Mousseau, Julien ; Vandamme, Jonathan ; Berger, Claire ; Tremblay-Roy, Jean-Sébastien ; Tissier, Renaud ; Micheau, Philippe ; Fortin-Pellerin, Étienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Arteries</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Cardiac output</topic><topic>Cardiovascular system</topic><topic>Catheters</topic><topic>Diastole</topic><topic>Diastolic pressure</topic><topic>Disease Models, Animal</topic><topic>Echocardiography</topic><topic>Engineering and Technology</topic><topic>Fluorocarbons - pharmacokinetics</topic><topic>Heart</topic><topic>Hemodynamics</topic><topic>Liquid Ventilation - methods</topic><topic>Lungs</topic><topic>Mechanical engineering</topic><topic>Mechanical ventilation</topic><topic>Medical instruments</topic><topic>Medicine and Health Sciences</topic><topic>Myocardium</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Pediatrics</topic><topic>Perfluorocarbons</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Relaxation time</topic><topic>Respiration</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome, Newborn - physiopathology</topic><topic>Respiratory Distress Syndrome, Newborn - therapy</topic><topic>Sensors</topic><topic>Sheep</topic><topic>Stability analysis</topic><topic>Surfactants</topic><topic>Thorax</topic><topic>Time constant</topic><topic>Ventilation</topic><topic>Ventilators</topic><topic>Ventricle</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sage, Michaël</creatorcontrib><creatorcontrib>Nadeau, Mathieu</creatorcontrib><creatorcontrib>Forand-Choinière, Claudia</creatorcontrib><creatorcontrib>Mousseau, Julien</creatorcontrib><creatorcontrib>Vandamme, Jonathan</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>Tremblay-Roy, Jean-Sébastien</creatorcontrib><creatorcontrib>Tissier, Renaud</creatorcontrib><creatorcontrib>Micheau, Philippe</creatorcontrib><creatorcontrib>Fortin-Pellerin, Étienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sage, Michaël</au><au>Nadeau, Mathieu</au><au>Forand-Choinière, Claudia</au><au>Mousseau, Julien</au><au>Vandamme, Jonathan</au><au>Berger, Claire</au><au>Tremblay-Roy, Jean-Sébastien</au><au>Tissier, Renaud</au><au>Micheau, Philippe</au><au>Fortin-Pellerin, Étienne</au><au>Lionetti, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0191885</spage><epage>e0191885</epage><pages>e0191885-e0191885</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome.
Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV.
Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p<0.001).
TLV was well tolerated in our neonatal lamb model of severe respiratory distress syndrome and had limited impact on left ventricle diastolic function when compared to conventional mechanical ventilation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29377922</pmid><doi>10.1371/journal.pone.0191885</doi><orcidid>https://orcid.org/0000-0002-1734-3857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-01, Vol.13 (1), p.e0191885-e0191885 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2390640877 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Animals Animals, Newborn Arteries Biology and Life Sciences Blood pressure Cardiac output Cardiovascular system Catheters Diastole Diastolic pressure Disease Models, Animal Echocardiography Engineering and Technology Fluorocarbons - pharmacokinetics Heart Hemodynamics Liquid Ventilation - methods Lungs Mechanical engineering Mechanical ventilation Medical instruments Medicine and Health Sciences Myocardium Neonates Newborn babies Pediatrics Perfluorocarbons Pharmacology Physiology Pulmonary arteries Pulmonary artery Relaxation time Respiration Respiratory distress syndrome Respiratory Distress Syndrome, Newborn - physiopathology Respiratory Distress Syndrome, Newborn - therapy Sensors Sheep Stability analysis Surfactants Thorax Time constant Ventilation Ventilators Ventricle Ventricular Function, Left |
title | Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20impacts%20of%20total%20liquid%20ventilation%20on%20left%20ventricular%20diastolic%20function%20in%20a%20model%20of%20neonatal%20respiratory%20distress%20syndrome&rft.jtitle=PloS%20one&rft.au=Sage,%20Micha%C3%ABl&rft.date=2018-01-01&rft.volume=13&rft.issue=1&rft.spage=e0191885&rft.epage=e0191885&rft.pages=e0191885-e0191885&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0191885&rft_dat=%3Cproquest_plos_%3E2390640877%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390640877&rft_id=info:pmid/29377922&rfr_iscdi=true |