Loading…

Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome

Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly lef...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-01, Vol.13 (1), p.e0191885-e0191885
Main Authors: Sage, Michaël, Nadeau, Mathieu, Forand-Choinière, Claudia, Mousseau, Julien, Vandamme, Jonathan, Berger, Claire, Tremblay-Roy, Jean-Sébastien, Tissier, Renaud, Micheau, Philippe, Fortin-Pellerin, Étienne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283
cites cdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283
container_end_page e0191885
container_issue 1
container_start_page e0191885
container_title PloS one
container_volume 13
creator Sage, Michaël
Nadeau, Mathieu
Forand-Choinière, Claudia
Mousseau, Julien
Vandamme, Jonathan
Berger, Claire
Tremblay-Roy, Jean-Sébastien
Tissier, Renaud
Micheau, Philippe
Fortin-Pellerin, Étienne
description Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome. Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV. Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p
doi_str_mv 10.1371/journal.pone.0191885
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2390640877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d8173c72cfa4c8d8e1a7644a76dc520</doaj_id><sourcerecordid>2390640877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</originalsourceid><addsrcrecordid>eNptUslqHDEQbUJCvCR_EBJBLr7MRFtruQSMyWIw5JKchVpSjzWopbGkNsxH-J_TPdM2dggIqVR676mqeE3zAcE1Ihx92aYxRx3WuxTdGiKJhGhfNadIErxiGJLXz-KT5qyULYQtEYy9bU6wJJxLjE-bh8tSXCk-bkC9dcAPO21qAakHNVUdQPB3o7fg3sXqg64-RTCt4Pp6yGVvxqAzsF6XmoI3oB-jOcB8BBoMybowq0WXop4Fsys7n3VNeT-xSp3uBZR9tDkN7l3zptehuPfLed78-f7t99XP1c2vH9dXlzcr02JWV5xDaR1mRkPR9brDBLcICwYp6xgVVFrRQygwoaSXrpNIMoM7KXvBaNthQc6bT0fdXUhFLZMsChMJGYWC8wlxfUTYpLdql_2g814l7dUhkfJG6Vy9CU4hKxAnhmPTa2qEFQ5pziidNjvVCyetr8tvYzc4a-a56fBC9OVL9Ldqk-5Vy4UgnE4CF4tATnejK1UNvhgXgp7GOhaFpCQQUUhm6Od_oP_vjh5RJqdSsuufikFQze56ZKnZXWpx10T7-LyRJ9Kjnchfk2PQrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390640877</pqid></control><display><type>article</type><title>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Sage, Michaël ; Nadeau, Mathieu ; Forand-Choinière, Claudia ; Mousseau, Julien ; Vandamme, Jonathan ; Berger, Claire ; Tremblay-Roy, Jean-Sébastien ; Tissier, Renaud ; Micheau, Philippe ; Fortin-Pellerin, Étienne</creator><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Sage, Michaël ; Nadeau, Mathieu ; Forand-Choinière, Claudia ; Mousseau, Julien ; Vandamme, Jonathan ; Berger, Claire ; Tremblay-Roy, Jean-Sébastien ; Tissier, Renaud ; Micheau, Philippe ; Fortin-Pellerin, Étienne ; Lionetti, Vincenzo</creatorcontrib><description>Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome. Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV. Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p&lt;0.001). TLV was well tolerated in our neonatal lamb model of severe respiratory distress syndrome and had limited impact on left ventricle diastolic function when compared to conventional mechanical ventilation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0191885</identifier><identifier>PMID: 29377922</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Animals, Newborn ; Arteries ; Biology and Life Sciences ; Blood pressure ; Cardiac output ; Cardiovascular system ; Catheters ; Diastole ; Diastolic pressure ; Disease Models, Animal ; Echocardiography ; Engineering and Technology ; Fluorocarbons - pharmacokinetics ; Heart ; Hemodynamics ; Liquid Ventilation - methods ; Lungs ; Mechanical engineering ; Mechanical ventilation ; Medical instruments ; Medicine and Health Sciences ; Myocardium ; Neonates ; Newborn babies ; Pediatrics ; Perfluorocarbons ; Pharmacology ; Physiology ; Pulmonary arteries ; Pulmonary artery ; Relaxation time ; Respiration ; Respiratory distress syndrome ; Respiratory Distress Syndrome, Newborn - physiopathology ; Respiratory Distress Syndrome, Newborn - therapy ; Sensors ; Sheep ; Stability analysis ; Surfactants ; Thorax ; Time constant ; Ventilation ; Ventilators ; Ventricle ; Ventricular Function, Left</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0191885-e0191885</ispartof><rights>2018 Sage et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Sage et al 2018 Sage et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</citedby><cites>FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</cites><orcidid>0000-0002-1734-3857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2390640877/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2390640877?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29377922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Sage, Michaël</creatorcontrib><creatorcontrib>Nadeau, Mathieu</creatorcontrib><creatorcontrib>Forand-Choinière, Claudia</creatorcontrib><creatorcontrib>Mousseau, Julien</creatorcontrib><creatorcontrib>Vandamme, Jonathan</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>Tremblay-Roy, Jean-Sébastien</creatorcontrib><creatorcontrib>Tissier, Renaud</creatorcontrib><creatorcontrib>Micheau, Philippe</creatorcontrib><creatorcontrib>Fortin-Pellerin, Étienne</creatorcontrib><title>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome. Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV. Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p&lt;0.001). TLV was well tolerated in our neonatal lamb model of severe respiratory distress syndrome and had limited impact on left ventricle diastolic function when compared to conventional mechanical ventilation.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Arteries</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Cardiac output</subject><subject>Cardiovascular system</subject><subject>Catheters</subject><subject>Diastole</subject><subject>Diastolic pressure</subject><subject>Disease Models, Animal</subject><subject>Echocardiography</subject><subject>Engineering and Technology</subject><subject>Fluorocarbons - pharmacokinetics</subject><subject>Heart</subject><subject>Hemodynamics</subject><subject>Liquid Ventilation - methods</subject><subject>Lungs</subject><subject>Mechanical engineering</subject><subject>Mechanical ventilation</subject><subject>Medical instruments</subject><subject>Medicine and Health Sciences</subject><subject>Myocardium</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Pediatrics</subject><subject>Perfluorocarbons</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Relaxation time</subject><subject>Respiration</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome, Newborn - physiopathology</subject><subject>Respiratory Distress Syndrome, Newborn - therapy</subject><subject>Sensors</subject><subject>Sheep</subject><subject>Stability analysis</subject><subject>Surfactants</subject><subject>Thorax</subject><subject>Time constant</subject><subject>Ventilation</subject><subject>Ventilators</subject><subject>Ventricle</subject><subject>Ventricular Function, Left</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUslqHDEQbUJCvCR_EBJBLr7MRFtruQSMyWIw5JKchVpSjzWopbGkNsxH-J_TPdM2dggIqVR676mqeE3zAcE1Ihx92aYxRx3WuxTdGiKJhGhfNadIErxiGJLXz-KT5qyULYQtEYy9bU6wJJxLjE-bh8tSXCk-bkC9dcAPO21qAakHNVUdQPB3o7fg3sXqg64-RTCt4Pp6yGVvxqAzsF6XmoI3oB-jOcB8BBoMybowq0WXop4Fsys7n3VNeT-xSp3uBZR9tDkN7l3zptehuPfLed78-f7t99XP1c2vH9dXlzcr02JWV5xDaR1mRkPR9brDBLcICwYp6xgVVFrRQygwoaSXrpNIMoM7KXvBaNthQc6bT0fdXUhFLZMsChMJGYWC8wlxfUTYpLdql_2g814l7dUhkfJG6Vy9CU4hKxAnhmPTa2qEFQ5pziidNjvVCyetr8tvYzc4a-a56fBC9OVL9Ldqk-5Vy4UgnE4CF4tATnejK1UNvhgXgp7GOhaFpCQQUUhm6Od_oP_vjh5RJqdSsuufikFQze56ZKnZXWpx10T7-LyRJ9Kjnchfk2PQrA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Sage, Michaël</creator><creator>Nadeau, Mathieu</creator><creator>Forand-Choinière, Claudia</creator><creator>Mousseau, Julien</creator><creator>Vandamme, Jonathan</creator><creator>Berger, Claire</creator><creator>Tremblay-Roy, Jean-Sébastien</creator><creator>Tissier, Renaud</creator><creator>Micheau, Philippe</creator><creator>Fortin-Pellerin, Étienne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1734-3857</orcidid></search><sort><creationdate>20180101</creationdate><title>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</title><author>Sage, Michaël ; Nadeau, Mathieu ; Forand-Choinière, Claudia ; Mousseau, Julien ; Vandamme, Jonathan ; Berger, Claire ; Tremblay-Roy, Jean-Sébastien ; Tissier, Renaud ; Micheau, Philippe ; Fortin-Pellerin, Étienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Arteries</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Cardiac output</topic><topic>Cardiovascular system</topic><topic>Catheters</topic><topic>Diastole</topic><topic>Diastolic pressure</topic><topic>Disease Models, Animal</topic><topic>Echocardiography</topic><topic>Engineering and Technology</topic><topic>Fluorocarbons - pharmacokinetics</topic><topic>Heart</topic><topic>Hemodynamics</topic><topic>Liquid Ventilation - methods</topic><topic>Lungs</topic><topic>Mechanical engineering</topic><topic>Mechanical ventilation</topic><topic>Medical instruments</topic><topic>Medicine and Health Sciences</topic><topic>Myocardium</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Pediatrics</topic><topic>Perfluorocarbons</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Relaxation time</topic><topic>Respiration</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome, Newborn - physiopathology</topic><topic>Respiratory Distress Syndrome, Newborn - therapy</topic><topic>Sensors</topic><topic>Sheep</topic><topic>Stability analysis</topic><topic>Surfactants</topic><topic>Thorax</topic><topic>Time constant</topic><topic>Ventilation</topic><topic>Ventilators</topic><topic>Ventricle</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sage, Michaël</creatorcontrib><creatorcontrib>Nadeau, Mathieu</creatorcontrib><creatorcontrib>Forand-Choinière, Claudia</creatorcontrib><creatorcontrib>Mousseau, Julien</creatorcontrib><creatorcontrib>Vandamme, Jonathan</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>Tremblay-Roy, Jean-Sébastien</creatorcontrib><creatorcontrib>Tissier, Renaud</creatorcontrib><creatorcontrib>Micheau, Philippe</creatorcontrib><creatorcontrib>Fortin-Pellerin, Étienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sage, Michaël</au><au>Nadeau, Mathieu</au><au>Forand-Choinière, Claudia</au><au>Mousseau, Julien</au><au>Vandamme, Jonathan</au><au>Berger, Claire</au><au>Tremblay-Roy, Jean-Sébastien</au><au>Tissier, Renaud</au><au>Micheau, Philippe</au><au>Fortin-Pellerin, Étienne</au><au>Lionetti, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0191885</spage><epage>e0191885</epage><pages>e0191885-e0191885</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome. Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV. Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p&lt;0.001). TLV was well tolerated in our neonatal lamb model of severe respiratory distress syndrome and had limited impact on left ventricle diastolic function when compared to conventional mechanical ventilation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29377922</pmid><doi>10.1371/journal.pone.0191885</doi><orcidid>https://orcid.org/0000-0002-1734-3857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-01, Vol.13 (1), p.e0191885-e0191885
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2390640877
source PubMed Central Free; Publicly Available Content Database
subjects Animals
Animals, Newborn
Arteries
Biology and Life Sciences
Blood pressure
Cardiac output
Cardiovascular system
Catheters
Diastole
Diastolic pressure
Disease Models, Animal
Echocardiography
Engineering and Technology
Fluorocarbons - pharmacokinetics
Heart
Hemodynamics
Liquid Ventilation - methods
Lungs
Mechanical engineering
Mechanical ventilation
Medical instruments
Medicine and Health Sciences
Myocardium
Neonates
Newborn babies
Pediatrics
Perfluorocarbons
Pharmacology
Physiology
Pulmonary arteries
Pulmonary artery
Relaxation time
Respiration
Respiratory distress syndrome
Respiratory Distress Syndrome, Newborn - physiopathology
Respiratory Distress Syndrome, Newborn - therapy
Sensors
Sheep
Stability analysis
Surfactants
Thorax
Time constant
Ventilation
Ventilators
Ventricle
Ventricular Function, Left
title Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20impacts%20of%20total%20liquid%20ventilation%20on%20left%20ventricular%20diastolic%20function%20in%20a%20model%20of%20neonatal%20respiratory%20distress%20syndrome&rft.jtitle=PloS%20one&rft.au=Sage,%20Micha%C3%ABl&rft.date=2018-01-01&rft.volume=13&rft.issue=1&rft.spage=e0191885&rft.epage=e0191885&rft.pages=e0191885-e0191885&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0191885&rft_dat=%3Cproquest_plos_%3E2390640877%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-7709de26ca08bfab23251286046b64849d8f0082343f9eb9196c2b99f8645b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390640877&rft_id=info:pmid/29377922&rfr_iscdi=true