Loading…

pH-dependent activation of cytokinesis modulates Escherichia coli cell size

Cell size is a complex trait, derived from both genetic and environmental factors. Environmental determinants of bacterial cell size identified to date primarily target assembly of cytosolic components of the cell division machinery. Whether certain environmental cues also impact cell size through c...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2020-03, Vol.16 (3), p.e1008685-e1008685
Main Authors: Mueller, Elizabeth A, Westfall, Corey S, Levin, Petra Anne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell size is a complex trait, derived from both genetic and environmental factors. Environmental determinants of bacterial cell size identified to date primarily target assembly of cytosolic components of the cell division machinery. Whether certain environmental cues also impact cell size through changes in the assembly or activity of extracytoplasmic division proteins remains an open question. Here, we identify extracellular pH as a modulator of cell division and a significant determinant of cell size across evolutionarily distant bacterial species. In the Gram-negative model organism Escherichia coli, our data indicate environmental pH impacts the length at which cells divide by altering the ability of the terminal cell division protein FtsN to localize to the cytokinetic ring where it activates division. Acidic environments lead to enrichment of FtsN at the septum and activation of division at a reduced cell length. Alkaline pH inhibits FtsN localization and suppresses division activation. Altogether, our work reveals a previously unappreciated role for pH in bacterial cell size control.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1008685