Loading…

Genome-wide transcriptomic analysis of the response of Botrytis cinerea to wuyiencin

Grey mould is caused by the ascomycetes Botrytis cinerea in a range of crop hosts. As a biological control agent, the nucleoside antibiotic wuyiencin has been industrially produced and widely used as an effective fungicide. To elucidate the effects of wuyiencin on the transcriptional regulation in B...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-04, Vol.15 (4), p.e0224643-e0224643
Main Authors: Shi, Liming, Liu, Binghua, Wei, Qiuhe, Ge, Beibei, Zhang, Kecheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Grey mould is caused by the ascomycetes Botrytis cinerea in a range of crop hosts. As a biological control agent, the nucleoside antibiotic wuyiencin has been industrially produced and widely used as an effective fungicide. To elucidate the effects of wuyiencin on the transcriptional regulation in B. cinerea, we, for the first time, report a genome-wide transcriptomic analysis of B. cinerea treated with wuyiencin. 2067 genes were differentially expressed, of them, 886 and 1181 genes were significantly upregulated and downregulated, respectively. Functional categorization indicated that transcript levels of genes involved in amino acid metabolism and those encoding putative secreted proteins were altered in response to wuyiencin treatment. Moreover, the expression of genes involved in protein synthesis and energy metabolism (oxidative phosphorylation) and of those encoding ATP-binding cassette transporters was markedly upregulated, whereas that of genes participating in DNA replication, cell cycle, and stress response was downregulated. Furthermore, wuyiencin resulted in mycelial malformation and negatively influenced cell growth rate and conidial yield in B. cinerea. Our results suggest that this nucleoside antibiotic regulates all aspects of cell growth and differentiation in B. cinerea. To summarize, some new candidate pathways and target genes that may related to the protective and antagonistic mechanisms in B. cinerea were identified underlying the action of biological control agents.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0224643