Loading…
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulated RNA-seq data has often yielded inconsistent results. The spike-in data, which were generated from the same bulk RNA sample, only represent technical variability, making the test results less reliable. We compa...
Saved in:
Published in: | PloS one 2020-04, Vol.15 (4), p.e0232271-e0232271 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Benchmarking RNA-seq differential expression analysis methods using spike-in and simulated RNA-seq data has often yielded inconsistent results. The spike-in data, which were generated from the same bulk RNA sample, only represent technical variability, making the test results less reliable. We compared the performance of 12 differential expression analysis methods for RNA-seq data, including recent variants in widely used software packages, using both RNA spike-in and simulation data for negative binomial (NB) model. Performance of edgeR, DESeq2, and ROTS was particularly different between the two benchmark tests. Then, each method was tested under most extensive simulation conditions especially demonstrating the large impacts of proportion, dispersion, and balance of differentially expressed (DE) genes. DESeq2, a robust version of edgeR (edgeR.rb), voom with TMM normalization (voom.tmm) and sample weights (voom.sw) showed an overall good performance regardless of presence of outliers and proportion of DE genes. The performance of RNA-seq DE gene analysis methods substantially depended on the benchmark used. Based on the simulation results, suitable methods were suggested under various test conditions. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0232271 |