Loading…
A Bayesian framework for the detection of diffusive heterogeneity
Cells are crowded and spatially heterogeneous, complicating the transport of organelles, proteins and other substrates. One aspect of this complex physical environment, the mobility of passively transported substrates, can be quantitatively characterized by the diffusion coefficient: a descriptor of...
Saved in:
Published in: | PloS one 2020-05, Vol.15 (5), p.e0221841-e0221841 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cells are crowded and spatially heterogeneous, complicating the transport of organelles, proteins and other substrates. One aspect of this complex physical environment, the mobility of passively transported substrates, can be quantitatively characterized by the diffusion coefficient: a descriptor of how rapidly substrates will diffuse in the cell, dependent on their size and effective local viscosity. The spatial dependence of diffusivity is challenging to quantitatively characterize, because temporally and spatially finite observations offer limited information about a spatially varying stochastic process. We present a Bayesian framework that estimates diffusion coefficients from single particle trajectories, and predicts our ability to distinguish differences in diffusion coefficient estimates, conditional on how much they differ and the amount of data collected. This framework is packaged into a public software repository, including a tutorial Jupyter notebook demonstrating implementation of our method for diffusivity estimation, analysis of sources of uncertainty estimation, and visualization of all results. This estimation and uncertainty analysis allows our framework to be used as a guide in experimental design of diffusivity assays. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0221841 |