Loading…

Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children

The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data. This cross-sectional study aimed...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-05, Vol.15 (5), p.e0233053
Main Authors: Lee, Li-Wen, Hsieh, Chu-Jung, Wu, Yun-Hsuan, Liao, Yu-San
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033
cites cdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033
container_end_page
container_issue 5
container_start_page e0233053
container_title PloS one
container_volume 15
creator Lee, Li-Wen
Hsieh, Chu-Jung
Wu, Yun-Hsuan
Liao, Yu-San
description The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data. This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks. Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure. All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk. DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates.
doi_str_mv 10.1371/journal.pone.0233053
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2402397024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623752689</galeid><doaj_id>oai_doaj_org_article_b66179986f3543d191c9506af829d814</doaj_id><sourcerecordid>A623752689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y0aXIjDLt-DCws-IV3IU3SmYyZpibp4P57053uMpW9kFISznnOm74nPVn2HIIFxDV8t3WD74Rd9K7TC4AwBhV-kJ1ChlFBEMAPj_Yn2ZMQtiARlJDH2QlGJYAU0NPML5XSKt8LO-iQuza_-LkslPZmP0ZNkNoLmwtlehd0Hk0IQ1pcrlLKm53pRNS5FF4Zt9NRNM4amXsTfoXcdHnvddEPjfYxiciNscrr7mn2qBU26GfTepZ9__jh2_nn4vLq0-p8eVlIwlAsINQESqRq3EioW1iBhrW0KgViuAIYYExqIioKRA2RaNJLGCgpqKDAdZnSZ9nLg25vXeBTuwJP1hFmNUBlIlYHQjmx5X3yI_w1d8Lwm4Dzay58NNJq3hACa8YoaXFVYgUZlKwCRLQUMUXhqPV-Om1odlpJ3cXUuZnoPNOZDV-7Pa8RZDUZBd5MAt79TpcR-W5sv7Wi0264-e5kGjBCE_rqH_R-dxO1FsmA6VqXzpWjKF8ShOsKEcoStbiHSo_SOyPTv9WaFJ8VvJ0VJCbqP3EthhD46uuX_2evfszZ10fsRgsbN8HZIRrXhTlYHkDpXQhet3dNhoCPo3HbDT6OBp9GI5W9OL6gu6LbWcB_AUiWB1o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402397024</pqid></control><display><type>article</type><title>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Lee, Li-Wen ; Hsieh, Chu-Jung ; Wu, Yun-Hsuan ; Liao, Yu-San</creator><contributor>Sun, Kai</contributor><creatorcontrib>Lee, Li-Wen ; Hsieh, Chu-Jung ; Wu, Yun-Hsuan ; Liao, Yu-San ; Sun, Kai</creatorcontrib><description>The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data. This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks. Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure. All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk. DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0233053</identifier><identifier>PMID: 32401808</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abdomen ; Absorptiometry, Photon - instrumentation ; Adipose tissue ; Algorithms ; Anthropometry ; Background radiation ; Biology and Life Sciences ; Blood pressure ; Blood Pressure Determination ; Body composition ; Body fat ; Body mass index ; Bone densitometry ; Cardiovascular diseases ; Child ; Children ; Composition ; Cross-Sectional Studies ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diabetes Mellitus - metabolism ; Diagnosis ; Diagnostic imaging ; Discrimination ; Dual energy X-ray absorptiometry ; Dyslipidemia ; Dyslipidemias - diagnostic imaging ; Dyslipidemias - metabolism ; Estimates ; Female ; Health aspects ; Health risks ; Hospitals ; Humans ; Hypertension ; Hypertension - diagnosis ; Intra-Abdominal Fat - diagnostic imaging ; Laboratory tests ; Lipids ; Lipids - analysis ; Magnetic resonance ; Magnetic Resonance Imaging ; Male ; Medicine and Health Sciences ; Metabolic diseases ; Methyltestosterone ; Obesity ; Parameters ; Pediatric research ; People and Places ; Prospective Studies ; Puberty ; Research and Analysis Methods ; Risk Assessment ; Risk factors ; Scanners ; Studies ; Type 2 diabetes ; X-rays</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0233053</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Lee et al 2020 Lee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</citedby><cites>FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</cites><orcidid>0000-0001-8019-1772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2402397024/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2402397024?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32401808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sun, Kai</contributor><creatorcontrib>Lee, Li-Wen</creatorcontrib><creatorcontrib>Hsieh, Chu-Jung</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Liao, Yu-San</creatorcontrib><title>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data. This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks. Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure. All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk. DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates.</description><subject>Abdomen</subject><subject>Absorptiometry, Photon - instrumentation</subject><subject>Adipose tissue</subject><subject>Algorithms</subject><subject>Anthropometry</subject><subject>Background radiation</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Blood Pressure Determination</subject><subject>Body composition</subject><subject>Body fat</subject><subject>Body mass index</subject><subject>Bone densitometry</subject><subject>Cardiovascular diseases</subject><subject>Child</subject><subject>Children</subject><subject>Composition</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Discrimination</subject><subject>Dual energy X-ray absorptiometry</subject><subject>Dyslipidemia</subject><subject>Dyslipidemias - diagnostic imaging</subject><subject>Dyslipidemias - metabolism</subject><subject>Estimates</subject><subject>Female</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension - diagnosis</subject><subject>Intra-Abdominal Fat - diagnostic imaging</subject><subject>Laboratory tests</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic diseases</subject><subject>Methyltestosterone</subject><subject>Obesity</subject><subject>Parameters</subject><subject>Pediatric research</subject><subject>People and Places</subject><subject>Prospective Studies</subject><subject>Puberty</subject><subject>Research and Analysis Methods</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Scanners</subject><subject>Studies</subject><subject>Type 2 diabetes</subject><subject>X-rays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y0aXIjDLt-DCws-IV3IU3SmYyZpibp4P57053uMpW9kFISznnOm74nPVn2HIIFxDV8t3WD74Rd9K7TC4AwBhV-kJ1ChlFBEMAPj_Yn2ZMQtiARlJDH2QlGJYAU0NPML5XSKt8LO-iQuza_-LkslPZmP0ZNkNoLmwtlehd0Hk0IQ1pcrlLKm53pRNS5FF4Zt9NRNM4amXsTfoXcdHnvddEPjfYxiciNscrr7mn2qBU26GfTepZ9__jh2_nn4vLq0-p8eVlIwlAsINQESqRq3EioW1iBhrW0KgViuAIYYExqIioKRA2RaNJLGCgpqKDAdZnSZ9nLg25vXeBTuwJP1hFmNUBlIlYHQjmx5X3yI_w1d8Lwm4Dzay58NNJq3hACa8YoaXFVYgUZlKwCRLQUMUXhqPV-Om1odlpJ3cXUuZnoPNOZDV-7Pa8RZDUZBd5MAt79TpcR-W5sv7Wi0264-e5kGjBCE_rqH_R-dxO1FsmA6VqXzpWjKF8ShOsKEcoStbiHSo_SOyPTv9WaFJ8VvJ0VJCbqP3EthhD46uuX_2evfszZ10fsRgsbN8HZIRrXhTlYHkDpXQhet3dNhoCPo3HbDT6OBp9GI5W9OL6gu6LbWcB_AUiWB1o</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Lee, Li-Wen</creator><creator>Hsieh, Chu-Jung</creator><creator>Wu, Yun-Hsuan</creator><creator>Liao, Yu-San</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8019-1772</orcidid></search><sort><creationdate>20200513</creationdate><title>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</title><author>Lee, Li-Wen ; Hsieh, Chu-Jung ; Wu, Yun-Hsuan ; Liao, Yu-San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abdomen</topic><topic>Absorptiometry, Photon - instrumentation</topic><topic>Adipose tissue</topic><topic>Algorithms</topic><topic>Anthropometry</topic><topic>Background radiation</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Blood Pressure Determination</topic><topic>Body composition</topic><topic>Body fat</topic><topic>Body mass index</topic><topic>Bone densitometry</topic><topic>Cardiovascular diseases</topic><topic>Child</topic><topic>Children</topic><topic>Composition</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Discrimination</topic><topic>Dual energy X-ray absorptiometry</topic><topic>Dyslipidemia</topic><topic>Dyslipidemias - diagnostic imaging</topic><topic>Dyslipidemias - metabolism</topic><topic>Estimates</topic><topic>Female</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension - diagnosis</topic><topic>Intra-Abdominal Fat - diagnostic imaging</topic><topic>Laboratory tests</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic diseases</topic><topic>Methyltestosterone</topic><topic>Obesity</topic><topic>Parameters</topic><topic>Pediatric research</topic><topic>People and Places</topic><topic>Prospective Studies</topic><topic>Puberty</topic><topic>Research and Analysis Methods</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Scanners</topic><topic>Studies</topic><topic>Type 2 diabetes</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Li-Wen</creatorcontrib><creatorcontrib>Hsieh, Chu-Jung</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Liao, Yu-San</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Li-Wen</au><au>Hsieh, Chu-Jung</au><au>Wu, Yun-Hsuan</au><au>Liao, Yu-San</au><au>Sun, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0233053</spage><pages>e0233053-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data. This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks. Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure. All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk. DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32401808</pmid><doi>10.1371/journal.pone.0233053</doi><tpages>e0233053</tpages><orcidid>https://orcid.org/0000-0001-8019-1772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-05, Vol.15 (5), p.e0233053
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2402397024
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Abdomen
Absorptiometry, Photon - instrumentation
Adipose tissue
Algorithms
Anthropometry
Background radiation
Biology and Life Sciences
Blood pressure
Blood Pressure Determination
Body composition
Body fat
Body mass index
Bone densitometry
Cardiovascular diseases
Child
Children
Composition
Cross-Sectional Studies
Diabetes
Diabetes mellitus
Diabetes Mellitus - diagnosis
Diabetes Mellitus - metabolism
Diagnosis
Diagnostic imaging
Discrimination
Dual energy X-ray absorptiometry
Dyslipidemia
Dyslipidemias - diagnostic imaging
Dyslipidemias - metabolism
Estimates
Female
Health aspects
Health risks
Hospitals
Humans
Hypertension
Hypertension - diagnosis
Intra-Abdominal Fat - diagnostic imaging
Laboratory tests
Lipids
Lipids - analysis
Magnetic resonance
Magnetic Resonance Imaging
Male
Medicine and Health Sciences
Metabolic diseases
Methyltestosterone
Obesity
Parameters
Pediatric research
People and Places
Prospective Studies
Puberty
Research and Analysis Methods
Risk Assessment
Risk factors
Scanners
Studies
Type 2 diabetes
X-rays
title Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Added%20values%20of%20DXA-derived%20visceral%20adipose%20tissue%20to%20discriminate%20cardiometabolic%20risks%20in%20pre-pubertal%20children&rft.jtitle=PloS%20one&rft.au=Lee,%20Li-Wen&rft.date=2020-05-13&rft.volume=15&rft.issue=5&rft.spage=e0233053&rft.pages=e0233053-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0233053&rft_dat=%3Cgale_plos_%3EA623752689%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402397024&rft_id=info:pmid/32401808&rft_galeid=A623752689&rfr_iscdi=true