Loading…
Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children
The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data. This cross-sectional study aimed...
Saved in:
Published in: | PloS one 2020-05, Vol.15 (5), p.e0233053 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033 |
container_end_page | |
container_issue | 5 |
container_start_page | e0233053 |
container_title | PloS one |
container_volume | 15 |
creator | Lee, Li-Wen Hsieh, Chu-Jung Wu, Yun-Hsuan Liao, Yu-San |
description | The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data.
This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks.
Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure.
All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk.
DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates. |
doi_str_mv | 10.1371/journal.pone.0233053 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2402397024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623752689</galeid><doaj_id>oai_doaj_org_article_b66179986f3543d191c9506af829d814</doaj_id><sourcerecordid>A623752689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y0aXIjDLt-DCws-IV3IU3SmYyZpibp4P57053uMpW9kFISznnOm74nPVn2HIIFxDV8t3WD74Rd9K7TC4AwBhV-kJ1ChlFBEMAPj_Yn2ZMQtiARlJDH2QlGJYAU0NPML5XSKt8LO-iQuza_-LkslPZmP0ZNkNoLmwtlehd0Hk0IQ1pcrlLKm53pRNS5FF4Zt9NRNM4amXsTfoXcdHnvddEPjfYxiciNscrr7mn2qBU26GfTepZ9__jh2_nn4vLq0-p8eVlIwlAsINQESqRq3EioW1iBhrW0KgViuAIYYExqIioKRA2RaNJLGCgpqKDAdZnSZ9nLg25vXeBTuwJP1hFmNUBlIlYHQjmx5X3yI_w1d8Lwm4Dzay58NNJq3hACa8YoaXFVYgUZlKwCRLQUMUXhqPV-Om1odlpJ3cXUuZnoPNOZDV-7Pa8RZDUZBd5MAt79TpcR-W5sv7Wi0264-e5kGjBCE_rqH_R-dxO1FsmA6VqXzpWjKF8ShOsKEcoStbiHSo_SOyPTv9WaFJ8VvJ0VJCbqP3EthhD46uuX_2evfszZ10fsRgsbN8HZIRrXhTlYHkDpXQhet3dNhoCPo3HbDT6OBp9GI5W9OL6gu6LbWcB_AUiWB1o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402397024</pqid></control><display><type>article</type><title>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Lee, Li-Wen ; Hsieh, Chu-Jung ; Wu, Yun-Hsuan ; Liao, Yu-San</creator><contributor>Sun, Kai</contributor><creatorcontrib>Lee, Li-Wen ; Hsieh, Chu-Jung ; Wu, Yun-Hsuan ; Liao, Yu-San ; Sun, Kai</creatorcontrib><description>The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data.
This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks.
Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure.
All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk.
DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0233053</identifier><identifier>PMID: 32401808</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abdomen ; Absorptiometry, Photon - instrumentation ; Adipose tissue ; Algorithms ; Anthropometry ; Background radiation ; Biology and Life Sciences ; Blood pressure ; Blood Pressure Determination ; Body composition ; Body fat ; Body mass index ; Bone densitometry ; Cardiovascular diseases ; Child ; Children ; Composition ; Cross-Sectional Studies ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diabetes Mellitus - metabolism ; Diagnosis ; Diagnostic imaging ; Discrimination ; Dual energy X-ray absorptiometry ; Dyslipidemia ; Dyslipidemias - diagnostic imaging ; Dyslipidemias - metabolism ; Estimates ; Female ; Health aspects ; Health risks ; Hospitals ; Humans ; Hypertension ; Hypertension - diagnosis ; Intra-Abdominal Fat - diagnostic imaging ; Laboratory tests ; Lipids ; Lipids - analysis ; Magnetic resonance ; Magnetic Resonance Imaging ; Male ; Medicine and Health Sciences ; Metabolic diseases ; Methyltestosterone ; Obesity ; Parameters ; Pediatric research ; People and Places ; Prospective Studies ; Puberty ; Research and Analysis Methods ; Risk Assessment ; Risk factors ; Scanners ; Studies ; Type 2 diabetes ; X-rays</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0233053</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Lee et al 2020 Lee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</citedby><cites>FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</cites><orcidid>0000-0001-8019-1772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2402397024/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2402397024?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32401808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sun, Kai</contributor><creatorcontrib>Lee, Li-Wen</creatorcontrib><creatorcontrib>Hsieh, Chu-Jung</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Liao, Yu-San</creatorcontrib><title>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data.
This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks.
Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure.
All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk.
DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates.</description><subject>Abdomen</subject><subject>Absorptiometry, Photon - instrumentation</subject><subject>Adipose tissue</subject><subject>Algorithms</subject><subject>Anthropometry</subject><subject>Background radiation</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Blood Pressure Determination</subject><subject>Body composition</subject><subject>Body fat</subject><subject>Body mass index</subject><subject>Bone densitometry</subject><subject>Cardiovascular diseases</subject><subject>Child</subject><subject>Children</subject><subject>Composition</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Discrimination</subject><subject>Dual energy X-ray absorptiometry</subject><subject>Dyslipidemia</subject><subject>Dyslipidemias - diagnostic imaging</subject><subject>Dyslipidemias - metabolism</subject><subject>Estimates</subject><subject>Female</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension - diagnosis</subject><subject>Intra-Abdominal Fat - diagnostic imaging</subject><subject>Laboratory tests</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic diseases</subject><subject>Methyltestosterone</subject><subject>Obesity</subject><subject>Parameters</subject><subject>Pediatric research</subject><subject>People and Places</subject><subject>Prospective Studies</subject><subject>Puberty</subject><subject>Research and Analysis Methods</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Scanners</subject><subject>Studies</subject><subject>Type 2 diabetes</subject><subject>X-rays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y0aXIjDLt-DCws-IV3IU3SmYyZpibp4P57053uMpW9kFISznnOm74nPVn2HIIFxDV8t3WD74Rd9K7TC4AwBhV-kJ1ChlFBEMAPj_Yn2ZMQtiARlJDH2QlGJYAU0NPML5XSKt8LO-iQuza_-LkslPZmP0ZNkNoLmwtlehd0Hk0IQ1pcrlLKm53pRNS5FF4Zt9NRNM4amXsTfoXcdHnvddEPjfYxiciNscrr7mn2qBU26GfTepZ9__jh2_nn4vLq0-p8eVlIwlAsINQESqRq3EioW1iBhrW0KgViuAIYYExqIioKRA2RaNJLGCgpqKDAdZnSZ9nLg25vXeBTuwJP1hFmNUBlIlYHQjmx5X3yI_w1d8Lwm4Dzay58NNJq3hACa8YoaXFVYgUZlKwCRLQUMUXhqPV-Om1odlpJ3cXUuZnoPNOZDV-7Pa8RZDUZBd5MAt79TpcR-W5sv7Wi0264-e5kGjBCE_rqH_R-dxO1FsmA6VqXzpWjKF8ShOsKEcoStbiHSo_SOyPTv9WaFJ8VvJ0VJCbqP3EthhD46uuX_2evfszZ10fsRgsbN8HZIRrXhTlYHkDpXQhet3dNhoCPo3HbDT6OBp9GI5W9OL6gu6LbWcB_AUiWB1o</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Lee, Li-Wen</creator><creator>Hsieh, Chu-Jung</creator><creator>Wu, Yun-Hsuan</creator><creator>Liao, Yu-San</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8019-1772</orcidid></search><sort><creationdate>20200513</creationdate><title>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</title><author>Lee, Li-Wen ; Hsieh, Chu-Jung ; Wu, Yun-Hsuan ; Liao, Yu-San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abdomen</topic><topic>Absorptiometry, Photon - instrumentation</topic><topic>Adipose tissue</topic><topic>Algorithms</topic><topic>Anthropometry</topic><topic>Background radiation</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Blood Pressure Determination</topic><topic>Body composition</topic><topic>Body fat</topic><topic>Body mass index</topic><topic>Bone densitometry</topic><topic>Cardiovascular diseases</topic><topic>Child</topic><topic>Children</topic><topic>Composition</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Discrimination</topic><topic>Dual energy X-ray absorptiometry</topic><topic>Dyslipidemia</topic><topic>Dyslipidemias - diagnostic imaging</topic><topic>Dyslipidemias - metabolism</topic><topic>Estimates</topic><topic>Female</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension - diagnosis</topic><topic>Intra-Abdominal Fat - diagnostic imaging</topic><topic>Laboratory tests</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic diseases</topic><topic>Methyltestosterone</topic><topic>Obesity</topic><topic>Parameters</topic><topic>Pediatric research</topic><topic>People and Places</topic><topic>Prospective Studies</topic><topic>Puberty</topic><topic>Research and Analysis Methods</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Scanners</topic><topic>Studies</topic><topic>Type 2 diabetes</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Li-Wen</creatorcontrib><creatorcontrib>Hsieh, Chu-Jung</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Liao, Yu-San</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Li-Wen</au><au>Hsieh, Chu-Jung</au><au>Wu, Yun-Hsuan</au><au>Liao, Yu-San</au><au>Sun, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0233053</spage><pages>e0233053-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The new generation of dual energy X-ray absorptiometry (DXA) scanners provide visceral adipose tissue (VAT) estimates by applying different algorithms to the conventional DXA-derived fat parameters such as total fat, trunk fat and android fat for the same image data.
This cross-sectional study aimed to investigate whether VAT estimates from Hologic scanners are better predictors of VAT than conventional DXA parameters in pre-pubertal children, and to explore the discrimination ability of these VAT methods for cardiometabolic risks.
Healthy pre-pubertal children aged 7-10 years were recruited for basic anthropometric, DXA and magnetic resonance imaging (MRI) measurements. Laboratory tests included lipid profile, glycaemic tests and blood pressure.
All VAT methods had acceptable to excellent performance for the diagnosis of dyslipidaemia (area under the curve [AUC] = 0.753-0.837) and hypertensive risk (AUC = 0.710-0.821) in boys, but suboptimal performance for these risks in girls, except for VAT by MRI in the diagnosis of dyslipidaemia. In both sexes, all VAT methods had no or poor discrimination ability for diabetes risk.
DXA-derived VAT estimates are very highly correlated with standard methods but has equivalent discrimination abilities compared to the existing DXA-derived fat estimates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32401808</pmid><doi>10.1371/journal.pone.0233053</doi><tpages>e0233053</tpages><orcidid>https://orcid.org/0000-0001-8019-1772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-05, Vol.15 (5), p.e0233053 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2402397024 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Abdomen Absorptiometry, Photon - instrumentation Adipose tissue Algorithms Anthropometry Background radiation Biology and Life Sciences Blood pressure Blood Pressure Determination Body composition Body fat Body mass index Bone densitometry Cardiovascular diseases Child Children Composition Cross-Sectional Studies Diabetes Diabetes mellitus Diabetes Mellitus - diagnosis Diabetes Mellitus - metabolism Diagnosis Diagnostic imaging Discrimination Dual energy X-ray absorptiometry Dyslipidemia Dyslipidemias - diagnostic imaging Dyslipidemias - metabolism Estimates Female Health aspects Health risks Hospitals Humans Hypertension Hypertension - diagnosis Intra-Abdominal Fat - diagnostic imaging Laboratory tests Lipids Lipids - analysis Magnetic resonance Magnetic Resonance Imaging Male Medicine and Health Sciences Metabolic diseases Methyltestosterone Obesity Parameters Pediatric research People and Places Prospective Studies Puberty Research and Analysis Methods Risk Assessment Risk factors Scanners Studies Type 2 diabetes X-rays |
title | Added values of DXA-derived visceral adipose tissue to discriminate cardiometabolic risks in pre-pubertal children |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Added%20values%20of%20DXA-derived%20visceral%20adipose%20tissue%20to%20discriminate%20cardiometabolic%20risks%20in%20pre-pubertal%20children&rft.jtitle=PloS%20one&rft.au=Lee,%20Li-Wen&rft.date=2020-05-13&rft.volume=15&rft.issue=5&rft.spage=e0233053&rft.pages=e0233053-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0233053&rft_dat=%3Cgale_plos_%3EA623752689%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-11e61c2d73bc1ef150b9f854a293503033676a580a712ab12a69048051a374033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402397024&rft_id=info:pmid/32401808&rft_galeid=A623752689&rfr_iscdi=true |