Loading…
Method for extraction of airborne LiDAR point cloud buildings based on segmentation
The LiDAR technology is a means of urban 3D modeling in recent years, and the extraction of buildings is a key step in urban 3D modeling. In view of the complexity of most airborne LiDAR building point cloud extraction algorithms that need to combine multiple feature parameters, this study proposes...
Saved in:
Published in: | PloS one 2020-05, Vol.15 (5), p.e0232778-e0232778 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The LiDAR technology is a means of urban 3D modeling in recent years, and the extraction of buildings is a key step in urban 3D modeling. In view of the complexity of most airborne LiDAR building point cloud extraction algorithms that need to combine multiple feature parameters, this study proposes a building point cloud extraction method based on the combination of the Point Cloud Library (PCL) region growth segmentation and the histogram. The filtered LiDAR point cloud is segmented by using the PCL region growth method, and then the local normal vector and direction cosine are calculated for each cluster after segmentation. Finally, the histogram is generated to effectively separate the building point cloud from the non-building.Two sets of airborne LiDAR data in the south and west parts of Tokushima, Japan, are used to test the feasibility of the proposed method. The results are compared with those of the commercial software TerraSolid and the K-means algorithm. Results show that the proposed extraction algorithm has lower type I and II errors and better extraction effect than that of the TerraSolid and the K-means algorithm. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0232778 |