Loading…

Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?

Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera s...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-06, Vol.15 (6), p.e0234820
Main Authors: Clem, C Scott, Sparbanie, Taylor M, Luro, Alec B, Harmon-Threatt, Alexandra N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3
cites cdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3
container_end_page
container_issue 6
container_start_page e0234820
container_title PloS one
container_volume 15
creator Clem, C Scott
Sparbanie, Taylor M
Luro, Alec B
Harmon-Threatt, Alexandra N
description Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods.
doi_str_mv 10.1371/journal.pone.0234820
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2415000921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627080119</galeid><doaj_id>oai_doaj_org_article_291610b6dd234b51b31291aa5f8c8e9f</doaj_id><sourcerecordid>A627080119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</originalsourceid><addsrcrecordid>eNp1Uk2P0zAUjBCIXQr_AEEkLnBoebZjx-YAWpWvlVbiAJwtx3lpXaV21k5W2n-PS7OrrQTywdbzzHie5xXFSwIrwmryfhem6E2_GoLHFVBWSQqPinOiGF0KCuzxg_NZ8SylHQBnUoinxRmjnCta1eeFXxtfGj9uw7B1fZhSuQ03GMuud5jKt5_dMGI0H8qftzEDWoPvytYlG93eeTNi6TF4Z8PofHBt6XxCOzrr2kx2vkyTjSFhmUI_jS74T8-LJ53pE76Y90Xx--uXX-vvy6sf3y7XF1dLyxUbl1zxqpaIBIGrWilsKuCdNFZaWqsajEXRKsQOrCJdJSRIC0QYwTgVICxbFK-PukMfkp6_KmlaEQ4AipKMuDwi2mB2esgNmXirg3H6byHEjTYxt9KjpooIAo1o2_zLDScNI7lkTHZkJaoua32cX5uaPbYW_RhNfyJ6euPdVm_Cja4ZVFyyLPBmFojhesI0_sfyjNqY7Mr5LmQxu89x6AtBa5BAcuKLYvUPVF4t7nNSHjuX6yeE6kg4ZJUidvfGCejDqN2Z0YdR0_OoZdqrh03fk-5mi_0BGvzR9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415000921</pqid></control><display><type>article</type><title>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed</source><creator>Clem, C Scott ; Sparbanie, Taylor M ; Luro, Alec B ; Harmon-Threatt, Alexandra N</creator><contributor>Blenau, Wolfgang</contributor><creatorcontrib>Clem, C Scott ; Sparbanie, Taylor M ; Luro, Alec B ; Harmon-Threatt, Alexandra N ; Blenau, Wolfgang</creatorcontrib><description>Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0234820</identifier><identifier>PMID: 32559247</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Arthropoda ; Arthropods ; Behavior ; Behavior, Animal - drug effects ; Beneficial arthropods ; Biological research ; Biology and Life Sciences ; Color ; Diptera ; Diptera - physiology ; Entomology ; Eristalis arbustorum ; Flies ; Flowers ; Flowers - chemistry ; Guanidines - toxicity ; Insect control ; Insecticides ; Insecticides - toxicity ; Markov Chains ; Monte Carlo Method ; Neonicotinoid insecticides ; Neonicotinoids - toxicity ; Pesticides ; Physical Sciences ; Plant reproduction ; Pollination ; Pollinators ; Reflectance ; Social Sciences ; Spectral reflectance ; Sucrose ; Sucrose - chemistry ; Sugar ; Syrphidae ; Testing ; Thiazoles - toxicity ; Visual stimuli</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0234820</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Clem et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Clem et al 2020 Clem et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</citedby><cites>FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</cites><orcidid>0000-0001-9104-193X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2415000921/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2415000921?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25735,27906,27907,36994,44572,53773,53775,74876</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32559247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Blenau, Wolfgang</contributor><creatorcontrib>Clem, C Scott</creatorcontrib><creatorcontrib>Sparbanie, Taylor M</creatorcontrib><creatorcontrib>Luro, Alec B</creatorcontrib><creatorcontrib>Harmon-Threatt, Alexandra N</creatorcontrib><title>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods.</description><subject>Animals</subject><subject>Arthropoda</subject><subject>Arthropods</subject><subject>Behavior</subject><subject>Behavior, Animal - drug effects</subject><subject>Beneficial arthropods</subject><subject>Biological research</subject><subject>Biology and Life Sciences</subject><subject>Color</subject><subject>Diptera</subject><subject>Diptera - physiology</subject><subject>Entomology</subject><subject>Eristalis arbustorum</subject><subject>Flies</subject><subject>Flowers</subject><subject>Flowers - chemistry</subject><subject>Guanidines - toxicity</subject><subject>Insect control</subject><subject>Insecticides</subject><subject>Insecticides - toxicity</subject><subject>Markov Chains</subject><subject>Monte Carlo Method</subject><subject>Neonicotinoid insecticides</subject><subject>Neonicotinoids - toxicity</subject><subject>Pesticides</subject><subject>Physical Sciences</subject><subject>Plant reproduction</subject><subject>Pollination</subject><subject>Pollinators</subject><subject>Reflectance</subject><subject>Social Sciences</subject><subject>Spectral reflectance</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><subject>Sugar</subject><subject>Syrphidae</subject><subject>Testing</subject><subject>Thiazoles - toxicity</subject><subject>Visual stimuli</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk2P0zAUjBCIXQr_AEEkLnBoebZjx-YAWpWvlVbiAJwtx3lpXaV21k5W2n-PS7OrrQTywdbzzHie5xXFSwIrwmryfhem6E2_GoLHFVBWSQqPinOiGF0KCuzxg_NZ8SylHQBnUoinxRmjnCta1eeFXxtfGj9uw7B1fZhSuQ03GMuud5jKt5_dMGI0H8qftzEDWoPvytYlG93eeTNi6TF4Z8PofHBt6XxCOzrr2kx2vkyTjSFhmUI_jS74T8-LJ53pE76Y90Xx--uXX-vvy6sf3y7XF1dLyxUbl1zxqpaIBIGrWilsKuCdNFZaWqsajEXRKsQOrCJdJSRIC0QYwTgVICxbFK-PukMfkp6_KmlaEQ4AipKMuDwi2mB2esgNmXirg3H6byHEjTYxt9KjpooIAo1o2_zLDScNI7lkTHZkJaoua32cX5uaPbYW_RhNfyJ6euPdVm_Cja4ZVFyyLPBmFojhesI0_sfyjNqY7Mr5LmQxu89x6AtBa5BAcuKLYvUPVF4t7nNSHjuX6yeE6kg4ZJUidvfGCejDqN2Z0YdR0_OoZdqrh03fk-5mi_0BGvzR9Q</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Clem, C Scott</creator><creator>Sparbanie, Taylor M</creator><creator>Luro, Alec B</creator><creator>Harmon-Threatt, Alexandra N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9104-193X</orcidid></search><sort><creationdate>20200619</creationdate><title>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</title><author>Clem, C Scott ; Sparbanie, Taylor M ; Luro, Alec B ; Harmon-Threatt, Alexandra N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Arthropoda</topic><topic>Arthropods</topic><topic>Behavior</topic><topic>Behavior, Animal - drug effects</topic><topic>Beneficial arthropods</topic><topic>Biological research</topic><topic>Biology and Life Sciences</topic><topic>Color</topic><topic>Diptera</topic><topic>Diptera - physiology</topic><topic>Entomology</topic><topic>Eristalis arbustorum</topic><topic>Flies</topic><topic>Flowers</topic><topic>Flowers - chemistry</topic><topic>Guanidines - toxicity</topic><topic>Insect control</topic><topic>Insecticides</topic><topic>Insecticides - toxicity</topic><topic>Markov Chains</topic><topic>Monte Carlo Method</topic><topic>Neonicotinoid insecticides</topic><topic>Neonicotinoids - toxicity</topic><topic>Pesticides</topic><topic>Physical Sciences</topic><topic>Plant reproduction</topic><topic>Pollination</topic><topic>Pollinators</topic><topic>Reflectance</topic><topic>Social Sciences</topic><topic>Spectral reflectance</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><topic>Sugar</topic><topic>Syrphidae</topic><topic>Testing</topic><topic>Thiazoles - toxicity</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clem, C Scott</creatorcontrib><creatorcontrib>Sparbanie, Taylor M</creatorcontrib><creatorcontrib>Luro, Alec B</creatorcontrib><creatorcontrib>Harmon-Threatt, Alexandra N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clem, C Scott</au><au>Sparbanie, Taylor M</au><au>Luro, Alec B</au><au>Harmon-Threatt, Alexandra N</au><au>Blenau, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-06-19</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0234820</spage><pages>e0234820-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32559247</pmid><doi>10.1371/journal.pone.0234820</doi><orcidid>https://orcid.org/0000-0001-9104-193X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-06, Vol.15 (6), p.e0234820
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2415000921
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed
subjects Animals
Arthropoda
Arthropods
Behavior
Behavior, Animal - drug effects
Beneficial arthropods
Biological research
Biology and Life Sciences
Color
Diptera
Diptera - physiology
Entomology
Eristalis arbustorum
Flies
Flowers
Flowers - chemistry
Guanidines - toxicity
Insect control
Insecticides
Insecticides - toxicity
Markov Chains
Monte Carlo Method
Neonicotinoid insecticides
Neonicotinoids - toxicity
Pesticides
Physical Sciences
Plant reproduction
Pollination
Pollinators
Reflectance
Social Sciences
Spectral reflectance
Sucrose
Sucrose - chemistry
Sugar
Syrphidae
Testing
Thiazoles - toxicity
Visual stimuli
title Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20anthophilous%20hover%20flies%20(Diptera:%20Syrphidae)%20discriminate%20neonicotinoid%20insecticides%20in%20sucrose%20solution?&rft.jtitle=PloS%20one&rft.au=Clem,%20C%20Scott&rft.date=2020-06-19&rft.volume=15&rft.issue=6&rft.spage=e0234820&rft.pages=e0234820-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0234820&rft_dat=%3Cgale_plos_%3EA627080119%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415000921&rft_id=info:pmid/32559247&rft_galeid=A627080119&rfr_iscdi=true