Loading…
Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?
Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera s...
Saved in:
Published in: | PloS one 2020-06, Vol.15 (6), p.e0234820 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3 |
container_end_page | |
container_issue | 6 |
container_start_page | e0234820 |
container_title | PloS one |
container_volume | 15 |
creator | Clem, C Scott Sparbanie, Taylor M Luro, Alec B Harmon-Threatt, Alexandra N |
description | Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods. |
doi_str_mv | 10.1371/journal.pone.0234820 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2415000921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627080119</galeid><doaj_id>oai_doaj_org_article_291610b6dd234b51b31291aa5f8c8e9f</doaj_id><sourcerecordid>A627080119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</originalsourceid><addsrcrecordid>eNp1Uk2P0zAUjBCIXQr_AEEkLnBoebZjx-YAWpWvlVbiAJwtx3lpXaV21k5W2n-PS7OrrQTywdbzzHie5xXFSwIrwmryfhem6E2_GoLHFVBWSQqPinOiGF0KCuzxg_NZ8SylHQBnUoinxRmjnCta1eeFXxtfGj9uw7B1fZhSuQ03GMuud5jKt5_dMGI0H8qftzEDWoPvytYlG93eeTNi6TF4Z8PofHBt6XxCOzrr2kx2vkyTjSFhmUI_jS74T8-LJ53pE76Y90Xx--uXX-vvy6sf3y7XF1dLyxUbl1zxqpaIBIGrWilsKuCdNFZaWqsajEXRKsQOrCJdJSRIC0QYwTgVICxbFK-PukMfkp6_KmlaEQ4AipKMuDwi2mB2esgNmXirg3H6byHEjTYxt9KjpooIAo1o2_zLDScNI7lkTHZkJaoua32cX5uaPbYW_RhNfyJ6euPdVm_Cja4ZVFyyLPBmFojhesI0_sfyjNqY7Mr5LmQxu89x6AtBa5BAcuKLYvUPVF4t7nNSHjuX6yeE6kg4ZJUidvfGCejDqN2Z0YdR0_OoZdqrh03fk-5mi_0BGvzR9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415000921</pqid></control><display><type>article</type><title>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed</source><creator>Clem, C Scott ; Sparbanie, Taylor M ; Luro, Alec B ; Harmon-Threatt, Alexandra N</creator><contributor>Blenau, Wolfgang</contributor><creatorcontrib>Clem, C Scott ; Sparbanie, Taylor M ; Luro, Alec B ; Harmon-Threatt, Alexandra N ; Blenau, Wolfgang</creatorcontrib><description>Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0234820</identifier><identifier>PMID: 32559247</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Arthropoda ; Arthropods ; Behavior ; Behavior, Animal - drug effects ; Beneficial arthropods ; Biological research ; Biology and Life Sciences ; Color ; Diptera ; Diptera - physiology ; Entomology ; Eristalis arbustorum ; Flies ; Flowers ; Flowers - chemistry ; Guanidines - toxicity ; Insect control ; Insecticides ; Insecticides - toxicity ; Markov Chains ; Monte Carlo Method ; Neonicotinoid insecticides ; Neonicotinoids - toxicity ; Pesticides ; Physical Sciences ; Plant reproduction ; Pollination ; Pollinators ; Reflectance ; Social Sciences ; Spectral reflectance ; Sucrose ; Sucrose - chemistry ; Sugar ; Syrphidae ; Testing ; Thiazoles - toxicity ; Visual stimuli</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0234820</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Clem et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Clem et al 2020 Clem et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</citedby><cites>FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</cites><orcidid>0000-0001-9104-193X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2415000921/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2415000921?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25735,27906,27907,36994,44572,53773,53775,74876</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32559247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Blenau, Wolfgang</contributor><creatorcontrib>Clem, C Scott</creatorcontrib><creatorcontrib>Sparbanie, Taylor M</creatorcontrib><creatorcontrib>Luro, Alec B</creatorcontrib><creatorcontrib>Harmon-Threatt, Alexandra N</creatorcontrib><title>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods.</description><subject>Animals</subject><subject>Arthropoda</subject><subject>Arthropods</subject><subject>Behavior</subject><subject>Behavior, Animal - drug effects</subject><subject>Beneficial arthropods</subject><subject>Biological research</subject><subject>Biology and Life Sciences</subject><subject>Color</subject><subject>Diptera</subject><subject>Diptera - physiology</subject><subject>Entomology</subject><subject>Eristalis arbustorum</subject><subject>Flies</subject><subject>Flowers</subject><subject>Flowers - chemistry</subject><subject>Guanidines - toxicity</subject><subject>Insect control</subject><subject>Insecticides</subject><subject>Insecticides - toxicity</subject><subject>Markov Chains</subject><subject>Monte Carlo Method</subject><subject>Neonicotinoid insecticides</subject><subject>Neonicotinoids - toxicity</subject><subject>Pesticides</subject><subject>Physical Sciences</subject><subject>Plant reproduction</subject><subject>Pollination</subject><subject>Pollinators</subject><subject>Reflectance</subject><subject>Social Sciences</subject><subject>Spectral reflectance</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><subject>Sugar</subject><subject>Syrphidae</subject><subject>Testing</subject><subject>Thiazoles - toxicity</subject><subject>Visual stimuli</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk2P0zAUjBCIXQr_AEEkLnBoebZjx-YAWpWvlVbiAJwtx3lpXaV21k5W2n-PS7OrrQTywdbzzHie5xXFSwIrwmryfhem6E2_GoLHFVBWSQqPinOiGF0KCuzxg_NZ8SylHQBnUoinxRmjnCta1eeFXxtfGj9uw7B1fZhSuQ03GMuud5jKt5_dMGI0H8qftzEDWoPvytYlG93eeTNi6TF4Z8PofHBt6XxCOzrr2kx2vkyTjSFhmUI_jS74T8-LJ53pE76Y90Xx--uXX-vvy6sf3y7XF1dLyxUbl1zxqpaIBIGrWilsKuCdNFZaWqsajEXRKsQOrCJdJSRIC0QYwTgVICxbFK-PukMfkp6_KmlaEQ4AipKMuDwi2mB2esgNmXirg3H6byHEjTYxt9KjpooIAo1o2_zLDScNI7lkTHZkJaoua32cX5uaPbYW_RhNfyJ6euPdVm_Cja4ZVFyyLPBmFojhesI0_sfyjNqY7Mr5LmQxu89x6AtBa5BAcuKLYvUPVF4t7nNSHjuX6yeE6kg4ZJUidvfGCejDqN2Z0YdR0_OoZdqrh03fk-5mi_0BGvzR9Q</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Clem, C Scott</creator><creator>Sparbanie, Taylor M</creator><creator>Luro, Alec B</creator><creator>Harmon-Threatt, Alexandra N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9104-193X</orcidid></search><sort><creationdate>20200619</creationdate><title>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</title><author>Clem, C Scott ; Sparbanie, Taylor M ; Luro, Alec B ; Harmon-Threatt, Alexandra N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Arthropoda</topic><topic>Arthropods</topic><topic>Behavior</topic><topic>Behavior, Animal - drug effects</topic><topic>Beneficial arthropods</topic><topic>Biological research</topic><topic>Biology and Life Sciences</topic><topic>Color</topic><topic>Diptera</topic><topic>Diptera - physiology</topic><topic>Entomology</topic><topic>Eristalis arbustorum</topic><topic>Flies</topic><topic>Flowers</topic><topic>Flowers - chemistry</topic><topic>Guanidines - toxicity</topic><topic>Insect control</topic><topic>Insecticides</topic><topic>Insecticides - toxicity</topic><topic>Markov Chains</topic><topic>Monte Carlo Method</topic><topic>Neonicotinoid insecticides</topic><topic>Neonicotinoids - toxicity</topic><topic>Pesticides</topic><topic>Physical Sciences</topic><topic>Plant reproduction</topic><topic>Pollination</topic><topic>Pollinators</topic><topic>Reflectance</topic><topic>Social Sciences</topic><topic>Spectral reflectance</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><topic>Sugar</topic><topic>Syrphidae</topic><topic>Testing</topic><topic>Thiazoles - toxicity</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clem, C Scott</creatorcontrib><creatorcontrib>Sparbanie, Taylor M</creatorcontrib><creatorcontrib>Luro, Alec B</creatorcontrib><creatorcontrib>Harmon-Threatt, Alexandra N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical & Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clem, C Scott</au><au>Sparbanie, Taylor M</au><au>Luro, Alec B</au><au>Harmon-Threatt, Alexandra N</au><au>Blenau, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-06-19</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0234820</spage><pages>e0234820-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding how neonicotinoid insecticides affect non-target arthropods, especially pollinators, is an area of high priority and popular debate. Few studies have considered how pollinators interact and detect neonicotinoids, and almost none have examined for these effects in anthophilous Diptera such as hover flies (Syrphidae). We investigated behavioral responses of two species of hover flies, Eristalis arbustorum L. (Eristalinae) and Toxomerus marginatus Say (Syrphinae), when given a choice between artificial flowers with uncontaminated sucrose solution and neonicotinoid-contaminated (clothianidin) sucrose solution at field-realistic levels 2.5 ppb (average) and 150 ppb (high). We examined for 1) evidence that wild-caught flies could detect the insecticide gustatorily by analyzing amount of time spent feeding on floral treatments, and 2) whether flies could discriminate floral treatments visually by comparing visitation rates, spectral reflectance differences, and hover fly photoreceptor sensitivities. We did not find evidence that either species fed more or less on either of the treatment solutions. Furthermore, T. marginatus did not appear to visit one of the flower choices over the other. Eristalis arbustorum, however, visited uncontaminated flowers more often than contaminated flowers. Spectral differences between the flower treatments overlap with Eristalis photoreceptor sensitivities, opening the possibility that E. arbustorum could discriminate sucrose-clothianidin solution visually. The relevance of our findings in field settings are uncertain but they do highlight the importance of visual cues in lab-based choice experiments involving insecticides. We strongly encourage further research in this area and the consideration of both behavioral responses and sensory mechanisms when determining insecticidal impacts on beneficial arthropods.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32559247</pmid><doi>10.1371/journal.pone.0234820</doi><orcidid>https://orcid.org/0000-0001-9104-193X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-06, Vol.15 (6), p.e0234820 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2415000921 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed |
subjects | Animals Arthropoda Arthropods Behavior Behavior, Animal - drug effects Beneficial arthropods Biological research Biology and Life Sciences Color Diptera Diptera - physiology Entomology Eristalis arbustorum Flies Flowers Flowers - chemistry Guanidines - toxicity Insect control Insecticides Insecticides - toxicity Markov Chains Monte Carlo Method Neonicotinoid insecticides Neonicotinoids - toxicity Pesticides Physical Sciences Plant reproduction Pollination Pollinators Reflectance Social Sciences Spectral reflectance Sucrose Sucrose - chemistry Sugar Syrphidae Testing Thiazoles - toxicity Visual stimuli |
title | Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20anthophilous%20hover%20flies%20(Diptera:%20Syrphidae)%20discriminate%20neonicotinoid%20insecticides%20in%20sucrose%20solution?&rft.jtitle=PloS%20one&rft.au=Clem,%20C%20Scott&rft.date=2020-06-19&rft.volume=15&rft.issue=6&rft.spage=e0234820&rft.pages=e0234820-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0234820&rft_dat=%3Cgale_plos_%3EA627080119%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c593t-595478ee1e059799eb405f8ac8c27970ace6d9eef0c91f46808c016a6352606c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415000921&rft_id=info:pmid/32559247&rft_galeid=A627080119&rfr_iscdi=true |