Loading…

Anthropometric indices and cut-off points in the diagnosis of metabolic disorders

Identifying metabolic disorders at the earliest phase of their development allows for an early intervention and the prevention of serious consequences of diseases. However, it is difficult to determine which of the anthropometric indices of obesity is the best tool for diagnosing metabolic disorders...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-06, Vol.15 (6), p.e0235121-e0235121
Main Authors: Gluszek, Stanislaw, Ciesla, Elzbieta, Gluszek-Osuch, Martyna, Koziel, Dorota, Kiebzak, Wojciech, Wypchlo, Lukasz, Suliga, Edyta, Sanada, Kiyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c735t-5b378afecda2ce5b124b5145650b2e2500630e6c917a612856ff7b8c6135cf1d3
cites cdi_FETCH-LOGICAL-c735t-5b378afecda2ce5b124b5145650b2e2500630e6c917a612856ff7b8c6135cf1d3
container_end_page e0235121
container_issue 6
container_start_page e0235121
container_title PloS one
container_volume 15
creator Gluszek, Stanislaw
Ciesla, Elzbieta
Gluszek-Osuch, Martyna
Koziel, Dorota
Kiebzak, Wojciech
Wypchlo, Lukasz
Suliga, Edyta
Sanada, Kiyoshi
description Identifying metabolic disorders at the earliest phase of their development allows for an early intervention and the prevention of serious consequences of diseases. However, it is difficult to determine which of the anthropometric indices of obesity is the best tool for diagnosing metabolic disorders. The aims of this study were to evaluate the usefulness of selected anthropometric indices and to determine optimal cut-off points for the identification of single metabolic disorders that are components of metabolic syndrome (MetS). Cross-sectional study. We analyzed the data of 12,328 participants aged 55.7±5.4 years. All participants were of European descent. The following indices had the highest discriminatory power for the identification of at least one MetS component: CUN-BAE, BMI, and WC in men (AUC = 0.734, 0.728, and 0.728, respectively) and WHtR, CUN-BAE, and WC in women (AUC = 0.715, 0.714, and 0.712, respectively) (p
doi_str_mv 10.1371/journal.pone.0235121
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2415813651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627340796</galeid><doaj_id>oai_doaj_org_article_4d468bd13a2e4683867c59d66dd6b7b5</doaj_id><sourcerecordid>A627340796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c735t-5b378afecda2ce5b124b5145650b2e2500630e6c917a612856ff7b8c6135cf1d3</originalsourceid><addsrcrecordid>eNqNktuKFDEQhhtR3HX1DQQbBNGLHnPoJD03wrB4GFhYPN6GdA4zGXpSY5IWfXszO61sy15ILhKqvvorVfxV9RSjBaYCv97BGIMaFgcIdoEIZZjge9U5XlLScILo_Vvvs-pRSjuEGO04f1idUcL4klJ-Xn1chbyNcIC9zdHr2gfjtU21CqbWY27AufoAPuRUUnXe2tp4tQmQfKrB1aVK9TCUQuMTRGNjelw9cGpI9sl0X1Rf3739cvmhubp-v75cXTVaUJYb1lPRKWe1UURb1mPS9gy3jDPUE0sYQpwiy_USC8Ux6Rh3TvSd5pgy7bChF9Wzk-5hgCSnbSRJWsw6TDnDhVifCANqJw_R71X8JUF5eROAuJEqZq8HK1vT8q43mCpiy6usSWi2NJwbw3vRs6L1Zuo29ntrtA05qmEmOs8Ev5Ub-CEFRUJwXgReTgIRvo82Zbn3SdthUMHCePNvTkRLaFvQ5_-gd083URtVBvDBQemrj6JyVZRoi8Ty2HZxB1WOsXuvi3WcL_FZwatZQWGy_Zk3akxJrj9_-n_2-tucfXGL3Vo15G2CYcweQpqD7QnUEVKK1v1dMkby6Pw_25BH58vJ-fQ3VbTzVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415813651</pqid></control><display><type>article</type><title>Anthropometric indices and cut-off points in the diagnosis of metabolic disorders</title><source>Publicly Available Content Database</source><source>PubMed</source><creator>Gluszek, Stanislaw ; Ciesla, Elzbieta ; Gluszek-Osuch, Martyna ; Koziel, Dorota ; Kiebzak, Wojciech ; Wypchlo, Lukasz ; Suliga, Edyta ; Sanada, Kiyoshi</creator><contributor>Sanada, Kiyoshi</contributor><creatorcontrib>Gluszek, Stanislaw ; Ciesla, Elzbieta ; Gluszek-Osuch, Martyna ; Koziel, Dorota ; Kiebzak, Wojciech ; Wypchlo, Lukasz ; Suliga, Edyta ; Sanada, Kiyoshi ; Sanada, Kiyoshi</creatorcontrib><description>Identifying metabolic disorders at the earliest phase of their development allows for an early intervention and the prevention of serious consequences of diseases. However, it is difficult to determine which of the anthropometric indices of obesity is the best tool for diagnosing metabolic disorders. The aims of this study were to evaluate the usefulness of selected anthropometric indices and to determine optimal cut-off points for the identification of single metabolic disorders that are components of metabolic syndrome (MetS). Cross-sectional study. We analyzed the data of 12,328 participants aged 55.7±5.4 years. All participants were of European descent. The following indices had the highest discriminatory power for the identification of at least one MetS component: CUN-BAE, BMI, and WC in men (AUC = 0.734, 0.728, and 0.728, respectively) and WHtR, CUN-BAE, and WC in women (AUC = 0.715, 0.714, and 0.712, respectively) (p&lt;0.001 for all). The other indices were similarly useful, except for the ABSI. For the BMI, the optimal cut-off point for the identification of metabolic abnormalities was 27.2 kg/m.sup.2 for both sexes. For the WC, the optimal cut-off point was of 94 cm for men and 87 cm for women. Prospective studies are needed to identify those indices in which changes in value predict the occurrence of metabolic disorders best.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0235121</identifier><identifier>PMID: 32569336</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Abnormalities ; Adipose tissue ; Anthropometry ; Biology and Life Sciences ; Blood levels ; Blood pressure ; Body fat ; Body mass ; Body mass index ; Body measurements ; Body size ; Cardiovascular disease ; Cholesterol ; Diabetes ; Diagnosis ; Enzymes ; Health sciences ; Hypertension ; Identification ; Insulin resistance ; Kinases ; Liver diseases ; Low density lipoprotein ; Medical diagnosis ; Medical schools ; Medicine and Health Sciences ; Metabolic diseases ; Metabolic disorders ; Metabolic syndrome ; Metabolites ; Obesity ; Overweight ; Risk factors ; Roundness ; Shape ; Studies ; Triglycerides</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0235121-e0235121</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Głuszek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Głuszek et al 2020 Głuszek et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c735t-5b378afecda2ce5b124b5145650b2e2500630e6c917a612856ff7b8c6135cf1d3</citedby><cites>FETCH-LOGICAL-c735t-5b378afecda2ce5b124b5145650b2e2500630e6c917a612856ff7b8c6135cf1d3</cites><orcidid>0000-0001-7752-0459 ; 0000-0003-3063-0380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2415813651/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2415813651?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Sanada, Kiyoshi</contributor><creatorcontrib>Gluszek, Stanislaw</creatorcontrib><creatorcontrib>Ciesla, Elzbieta</creatorcontrib><creatorcontrib>Gluszek-Osuch, Martyna</creatorcontrib><creatorcontrib>Koziel, Dorota</creatorcontrib><creatorcontrib>Kiebzak, Wojciech</creatorcontrib><creatorcontrib>Wypchlo, Lukasz</creatorcontrib><creatorcontrib>Suliga, Edyta</creatorcontrib><creatorcontrib>Sanada, Kiyoshi</creatorcontrib><title>Anthropometric indices and cut-off points in the diagnosis of metabolic disorders</title><title>PloS one</title><description>Identifying metabolic disorders at the earliest phase of their development allows for an early intervention and the prevention of serious consequences of diseases. However, it is difficult to determine which of the anthropometric indices of obesity is the best tool for diagnosing metabolic disorders. The aims of this study were to evaluate the usefulness of selected anthropometric indices and to determine optimal cut-off points for the identification of single metabolic disorders that are components of metabolic syndrome (MetS). Cross-sectional study. We analyzed the data of 12,328 participants aged 55.7±5.4 years. All participants were of European descent. The following indices had the highest discriminatory power for the identification of at least one MetS component: CUN-BAE, BMI, and WC in men (AUC = 0.734, 0.728, and 0.728, respectively) and WHtR, CUN-BAE, and WC in women (AUC = 0.715, 0.714, and 0.712, respectively) (p&lt;0.001 for all). The other indices were similarly useful, except for the ABSI. For the BMI, the optimal cut-off point for the identification of metabolic abnormalities was 27.2 kg/m.sup.2 for both sexes. For the WC, the optimal cut-off point was of 94 cm for men and 87 cm for women. Prospective studies are needed to identify those indices in which changes in value predict the occurrence of metabolic disorders best.</description><subject>Abnormalities</subject><subject>Adipose tissue</subject><subject>Anthropometry</subject><subject>Biology and Life Sciences</subject><subject>Blood levels</subject><subject>Blood pressure</subject><subject>Body fat</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body measurements</subject><subject>Body size</subject><subject>Cardiovascular disease</subject><subject>Cholesterol</subject><subject>Diabetes</subject><subject>Diagnosis</subject><subject>Enzymes</subject><subject>Health sciences</subject><subject>Hypertension</subject><subject>Identification</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Liver diseases</subject><subject>Low density lipoprotein</subject><subject>Medical diagnosis</subject><subject>Medical schools</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic diseases</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolites</subject><subject>Obesity</subject><subject>Overweight</subject><subject>Risk factors</subject><subject>Roundness</subject><subject>Shape</subject><subject>Studies</subject><subject>Triglycerides</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNktuKFDEQhhtR3HX1DQQbBNGLHnPoJD03wrB4GFhYPN6GdA4zGXpSY5IWfXszO61sy15ILhKqvvorVfxV9RSjBaYCv97BGIMaFgcIdoEIZZjge9U5XlLScILo_Vvvs-pRSjuEGO04f1idUcL4klJ-Xn1chbyNcIC9zdHr2gfjtU21CqbWY27AufoAPuRUUnXe2tp4tQmQfKrB1aVK9TCUQuMTRGNjelw9cGpI9sl0X1Rf3739cvmhubp-v75cXTVaUJYb1lPRKWe1UURb1mPS9gy3jDPUE0sYQpwiy_USC8Ux6Rh3TvSd5pgy7bChF9Wzk-5hgCSnbSRJWsw6TDnDhVifCANqJw_R71X8JUF5eROAuJEqZq8HK1vT8q43mCpiy6usSWi2NJwbw3vRs6L1Zuo29ntrtA05qmEmOs8Ev5Ub-CEFRUJwXgReTgIRvo82Zbn3SdthUMHCePNvTkRLaFvQ5_-gd083URtVBvDBQemrj6JyVZRoi8Ty2HZxB1WOsXuvi3WcL_FZwatZQWGy_Zk3akxJrj9_-n_2-tucfXGL3Vo15G2CYcweQpqD7QnUEVKK1v1dMkby6Pw_25BH58vJ-fQ3VbTzVA</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Gluszek, Stanislaw</creator><creator>Ciesla, Elzbieta</creator><creator>Gluszek-Osuch, Martyna</creator><creator>Koziel, Dorota</creator><creator>Kiebzak, Wojciech</creator><creator>Wypchlo, Lukasz</creator><creator>Suliga, Edyta</creator><creator>Sanada, Kiyoshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7752-0459</orcidid><orcidid>https://orcid.org/0000-0003-3063-0380</orcidid></search><sort><creationdate>20200622</creationdate><title>Anthropometric indices and cut-off points in the diagnosis of metabolic disorders</title><author>Gluszek, Stanislaw ; Ciesla, Elzbieta ; Gluszek-Osuch, Martyna ; Koziel, Dorota ; Kiebzak, Wojciech ; Wypchlo, Lukasz ; Suliga, Edyta ; Sanada, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c735t-5b378afecda2ce5b124b5145650b2e2500630e6c917a612856ff7b8c6135cf1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abnormalities</topic><topic>Adipose tissue</topic><topic>Anthropometry</topic><topic>Biology and Life Sciences</topic><topic>Blood levels</topic><topic>Blood pressure</topic><topic>Body fat</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body measurements</topic><topic>Body size</topic><topic>Cardiovascular disease</topic><topic>Cholesterol</topic><topic>Diabetes</topic><topic>Diagnosis</topic><topic>Enzymes</topic><topic>Health sciences</topic><topic>Hypertension</topic><topic>Identification</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Liver diseases</topic><topic>Low density lipoprotein</topic><topic>Medical diagnosis</topic><topic>Medical schools</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic diseases</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolites</topic><topic>Obesity</topic><topic>Overweight</topic><topic>Risk factors</topic><topic>Roundness</topic><topic>Shape</topic><topic>Studies</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gluszek, Stanislaw</creatorcontrib><creatorcontrib>Ciesla, Elzbieta</creatorcontrib><creatorcontrib>Gluszek-Osuch, Martyna</creatorcontrib><creatorcontrib>Koziel, Dorota</creatorcontrib><creatorcontrib>Kiebzak, Wojciech</creatorcontrib><creatorcontrib>Wypchlo, Lukasz</creatorcontrib><creatorcontrib>Suliga, Edyta</creatorcontrib><creatorcontrib>Sanada, Kiyoshi</creatorcontrib><collection>CrossRef</collection><collection>Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gluszek, Stanislaw</au><au>Ciesla, Elzbieta</au><au>Gluszek-Osuch, Martyna</au><au>Koziel, Dorota</au><au>Kiebzak, Wojciech</au><au>Wypchlo, Lukasz</au><au>Suliga, Edyta</au><au>Sanada, Kiyoshi</au><au>Sanada, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anthropometric indices and cut-off points in the diagnosis of metabolic disorders</atitle><jtitle>PloS one</jtitle><date>2020-06-22</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0235121</spage><epage>e0235121</epage><pages>e0235121-e0235121</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identifying metabolic disorders at the earliest phase of their development allows for an early intervention and the prevention of serious consequences of diseases. However, it is difficult to determine which of the anthropometric indices of obesity is the best tool for diagnosing metabolic disorders. The aims of this study were to evaluate the usefulness of selected anthropometric indices and to determine optimal cut-off points for the identification of single metabolic disorders that are components of metabolic syndrome (MetS). Cross-sectional study. We analyzed the data of 12,328 participants aged 55.7±5.4 years. All participants were of European descent. The following indices had the highest discriminatory power for the identification of at least one MetS component: CUN-BAE, BMI, and WC in men (AUC = 0.734, 0.728, and 0.728, respectively) and WHtR, CUN-BAE, and WC in women (AUC = 0.715, 0.714, and 0.712, respectively) (p&lt;0.001 for all). The other indices were similarly useful, except for the ABSI. For the BMI, the optimal cut-off point for the identification of metabolic abnormalities was 27.2 kg/m.sup.2 for both sexes. For the WC, the optimal cut-off point was of 94 cm for men and 87 cm for women. Prospective studies are needed to identify those indices in which changes in value predict the occurrence of metabolic disorders best.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32569336</pmid><doi>10.1371/journal.pone.0235121</doi><tpages>e0235121</tpages><orcidid>https://orcid.org/0000-0001-7752-0459</orcidid><orcidid>https://orcid.org/0000-0003-3063-0380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-06, Vol.15 (6), p.e0235121-e0235121
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2415813651
source Publicly Available Content Database; PubMed
subjects Abnormalities
Adipose tissue
Anthropometry
Biology and Life Sciences
Blood levels
Blood pressure
Body fat
Body mass
Body mass index
Body measurements
Body size
Cardiovascular disease
Cholesterol
Diabetes
Diagnosis
Enzymes
Health sciences
Hypertension
Identification
Insulin resistance
Kinases
Liver diseases
Low density lipoprotein
Medical diagnosis
Medical schools
Medicine and Health Sciences
Metabolic diseases
Metabolic disorders
Metabolic syndrome
Metabolites
Obesity
Overweight
Risk factors
Roundness
Shape
Studies
Triglycerides
title Anthropometric indices and cut-off points in the diagnosis of metabolic disorders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anthropometric%20indices%20and%20cut-off%20points%20in%20the%20diagnosis%20of%20metabolic%20disorders&rft.jtitle=PloS%20one&rft.au=Gluszek,%20Stanislaw&rft.date=2020-06-22&rft.volume=15&rft.issue=6&rft.spage=e0235121&rft.epage=e0235121&rft.pages=e0235121-e0235121&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0235121&rft_dat=%3Cgale_plos_%3EA627340796%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c735t-5b378afecda2ce5b124b5145650b2e2500630e6c917a612856ff7b8c6135cf1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415813651&rft_id=info:pmid/32569336&rft_galeid=A627340796&rfr_iscdi=true