Loading…
A between-herd data-driven stochastic model to explore the spatio-temporal spread of hepatitis E virus in the French pig production network
Hepatitis E virus is a zoonotic pathogen for which pigs are recognized as the major reservoir in industrialised countries. A multiscale model was developed to assess the HEV transmission and persistence pattern in the pig production sector through an integrative approach taking into account within-f...
Saved in:
Published in: | PloS one 2020-07, Vol.15 (7), p.e0230257 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hepatitis E virus is a zoonotic pathogen for which pigs are recognized as the major reservoir in industrialised countries. A multiscale model was developed to assess the HEV transmission and persistence pattern in the pig production sector through an integrative approach taking into account within-farm dynamics and animal movements based on actual data. Within-farm dynamics included both demographic and epidemiological processes. Direct contact and environmental transmission routes were considered along with the possible co-infection with immunomodulating viruses (IMVs) known to modify HEV infection dynamics. Movements were limited to 3,017 herds forming the largest community on the swine commercial network in France and data from the national pig movement database were used to build the contact matrix. Between-herd transmission was modelled by coupling within-herd and network dynamics using the SimInf package. Different introduction scenarios were tested as well as a decrease in the prevalence of IMV-infected farms. After introduction of a single infected gilt, the model showed that the transmission pathway as well as the prevalence of HEV-infected pigs at slaughter age were affected by the type of the index farm, the health status of the population and the type of the infected farms. These outcomes could help design HEV control strategies at a territorial scale based on the assessment of the farms' and network's risk. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0230257 |