Loading…

Taste of time: A porous-medium model for human tongue surface with implications for early taste perception

Most sensory systems are remarkable in their temporal precision, reflected in such phrases as "a flash of light" or "a twig snap". Yet taste is complicated by the transport processes of stimuli through the papilla matrix to reach taste receptors, processes that are poorly underst...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2020-06, Vol.16 (6), p.e1007888-e1007888
Main Authors: Wu, Zhenxing, Zhao, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most sensory systems are remarkable in their temporal precision, reflected in such phrases as "a flash of light" or "a twig snap". Yet taste is complicated by the transport processes of stimuli through the papilla matrix to reach taste receptors, processes that are poorly understood. We computationally modeled the surface of the human tongue as a microfiber porous medium and found that time-concentration profiles within the papilla zone rise with significant delay that well match experimental ratings of perceived taste intensity to a range of sweet and salty stimuli for both rapid pulses and longer sip-and-hold exposures. Diffusivity of these taste stimuli, determined mostly by molecular size, correlates greatly with time and slope to reach peak intensity: smaller molecular size may lead to quicker taste perception. Our study demonstrates the novelty of modeling the human tongue as a porous material to drastically simplify computational approaches and that peripheral transport processes may significantly affect the temporal profile of taste perception, at least to sweet and salty compounds.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1007888