Loading…
High-fidelity SaCas9 identified by directional screening in human cells
CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects...
Saved in:
Published in: | PLoS biology 2020-07, Vol.18 (7), p.e3000747-e3000747 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c695t-d0a77f688c0e7a81130ec688f40f3d3c11a54a399cee0c77d02906e720e3d273 |
---|---|
cites | cdi_FETCH-LOGICAL-c695t-d0a77f688c0e7a81130ec688f40f3d3c11a54a399cee0c77d02906e720e3d273 |
container_end_page | e3000747 |
container_issue | 7 |
container_start_page | e3000747 |
container_title | PLoS biology |
container_volume | 18 |
creator | Xie, Haihua Ge, Xianglian Yang, Fayu Wang, Bang Li, Shuang Duan, Jinzhi Lv, Xiujuan Cheng, Congsheng Song, Zongming Liu, Changbao Zhao, Junzhao Zhang, Yu Wu, Jinyu Gao, Caixia Zhang, Jinwei Gu, Feng |
description | CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects of wild-type (WT) SaCas9 at single-nucleotide (single-nt) resolution and describe a directional screening system to identify novel SaCas9 variants with desired properties in human cells. Using this system, we identified enhanced-fidelity SaCas9 (efSaCas9) (variant Mut268 harboring the single mutation of N260D), which could effectively distinguish and reject single base-pair mismatches. We demonstrate dramatically reduced off-target effects (approximately 2- to 93-fold improvements) of Mut268 compared to WT using targeted deep-sequencing analyses. To understand the structural origin of the fidelity enhancement, we find that N260, located in the REC3 domain, orchestrates an extensive network of contacts between REC3 and the guide RNA-DNA heteroduplex. efSaCas9 can be broadly used in genome-editing applications that require high fidelity. Furthermore, this study provides a general strategy to rapidly evolve other desired CRISPR-Cas9 traits besides enhanced fidelity, to expand the utility of the CRISPR toolkit. |
doi_str_mv | 10.1371/journal.pbio.3000747 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434498748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632937818</galeid><doaj_id>oai_doaj_org_article_46f2b5198ce1454aa7127860471039e6</doaj_id><sourcerecordid>A632937818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-d0a77f688c0e7a81130ec688f40f3d3c11a54a399cee0c77d02906e720e3d273</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLP5KbF-QqhW0K1VUohVXy2tPsl5l48VOEPvvcdi0alAPIB_89cw7nteTZa8xWmDK8cetH0Kn28V-7fyCIoQ440-yU1yysuBClE8frE-yFzFuESJEEvE8O6GkYkzK8jS7uHTNpqidhdb1h_xGL3WUedp2vasd2Hx9yK0LYHrnU7Y8mgDQua7JXZdvhp3ucgNtG19mz2rdRng1zWfZ7ZfPt8vL4ur6YrU8vypMJcu-sEhzXldCGARcC4wpApO2NUM1tdRgrEumqZQGABnOLSISVcAJAmoJp2fZ26PsvvVRTRZERRhN9QjORCJWR8J6vVX74HY6HJTXTv058KFROvTOtKBYVZN1iaUwgFlKqzkmXFSIcYyohCppfZqyDesdWJNMCbqdic5vOrdRjf-pOB01RoH3k0DwPwaIvdq5OPqlO_DD-G5CUcm5HN_97i_08eomqtGpANfVPuU1o6g6ryiRlAs8UotHqDQs7JzxHdQunc8CPswCEtPDr77RQ4xqdfPtP9iv_85ef5-z7Mia4GMMUN_7jJEaO_7OEDV2vJo6PoW9efhH90F3LU5_Az6P-Os</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434498748</pqid></control><display><type>article</type><title>High-fidelity SaCas9 identified by directional screening in human cells</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Xie, Haihua ; Ge, Xianglian ; Yang, Fayu ; Wang, Bang ; Li, Shuang ; Duan, Jinzhi ; Lv, Xiujuan ; Cheng, Congsheng ; Song, Zongming ; Liu, Changbao ; Zhao, Junzhao ; Zhang, Yu ; Wu, Jinyu ; Gao, Caixia ; Zhang, Jinwei ; Gu, Feng</creator><contributor>Koo, Bon-Kyoung</contributor><creatorcontrib>Xie, Haihua ; Ge, Xianglian ; Yang, Fayu ; Wang, Bang ; Li, Shuang ; Duan, Jinzhi ; Lv, Xiujuan ; Cheng, Congsheng ; Song, Zongming ; Liu, Changbao ; Zhao, Junzhao ; Zhang, Yu ; Wu, Jinyu ; Gao, Caixia ; Zhang, Jinwei ; Gu, Feng ; Koo, Bon-Kyoung</creatorcontrib><description>CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects of wild-type (WT) SaCas9 at single-nucleotide (single-nt) resolution and describe a directional screening system to identify novel SaCas9 variants with desired properties in human cells. Using this system, we identified enhanced-fidelity SaCas9 (efSaCas9) (variant Mut268 harboring the single mutation of N260D), which could effectively distinguish and reject single base-pair mismatches. We demonstrate dramatically reduced off-target effects (approximately 2- to 93-fold improvements) of Mut268 compared to WT using targeted deep-sequencing analyses. To understand the structural origin of the fidelity enhancement, we find that N260, located in the REC3 domain, orchestrates an extensive network of contacts between REC3 and the guide RNA-DNA heteroduplex. efSaCas9 can be broadly used in genome-editing applications that require high fidelity. Furthermore, this study provides a general strategy to rapidly evolve other desired CRISPR-Cas9 traits besides enhanced fidelity, to expand the utility of the CRISPR toolkit.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000747</identifier><identifier>PMID: 32644995</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Cells ; CRISPR ; CRISPR-Associated Protein 9 - metabolism ; Deoxyribonucleic acid ; Diabetes ; DNA ; Editing ; Engineering and Technology ; Fidelity ; Funding ; Gene Library ; Genetic aspects ; Genetic Engineering ; Genetic Loci ; Genetic variation ; Genome editing ; Genome, Human ; Genomes ; Genomics ; HEK293 Cells ; Hospitals ; Humans ; Identification and classification ; Kidney diseases ; Laboratories ; Methods ; Methods and Resources ; Molecular biology ; Mutation ; Nucleotides ; Nucleotides - genetics ; Optometry ; Phenotype ; Reproducibility of Results ; Research and analysis methods ; Ribonucleic acid ; RNA ; Screening ; Software ; Staphylococcus aureus - metabolism ; Toolkits ; Transcriptional Activation - genetics</subject><ispartof>PLoS biology, 2020-07, Vol.18 (7), p.e3000747-e3000747</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-d0a77f688c0e7a81130ec688f40f3d3c11a54a399cee0c77d02906e720e3d273</citedby><cites>FETCH-LOGICAL-c695t-d0a77f688c0e7a81130ec688f40f3d3c11a54a399cee0c77d02906e720e3d273</cites><orcidid>0000-0003-2588-4108 ; 0000-0002-2114-173X ; 0000-0002-9600-8407 ; 0000-0003-3169-8248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2434498748/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2434498748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32644995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Koo, Bon-Kyoung</contributor><creatorcontrib>Xie, Haihua</creatorcontrib><creatorcontrib>Ge, Xianglian</creatorcontrib><creatorcontrib>Yang, Fayu</creatorcontrib><creatorcontrib>Wang, Bang</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Duan, Jinzhi</creatorcontrib><creatorcontrib>Lv, Xiujuan</creatorcontrib><creatorcontrib>Cheng, Congsheng</creatorcontrib><creatorcontrib>Song, Zongming</creatorcontrib><creatorcontrib>Liu, Changbao</creatorcontrib><creatorcontrib>Zhao, Junzhao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wu, Jinyu</creatorcontrib><creatorcontrib>Gao, Caixia</creatorcontrib><creatorcontrib>Zhang, Jinwei</creatorcontrib><creatorcontrib>Gu, Feng</creatorcontrib><title>High-fidelity SaCas9 identified by directional screening in human cells</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects of wild-type (WT) SaCas9 at single-nucleotide (single-nt) resolution and describe a directional screening system to identify novel SaCas9 variants with desired properties in human cells. Using this system, we identified enhanced-fidelity SaCas9 (efSaCas9) (variant Mut268 harboring the single mutation of N260D), which could effectively distinguish and reject single base-pair mismatches. We demonstrate dramatically reduced off-target effects (approximately 2- to 93-fold improvements) of Mut268 compared to WT using targeted deep-sequencing analyses. To understand the structural origin of the fidelity enhancement, we find that N260, located in the REC3 domain, orchestrates an extensive network of contacts between REC3 and the guide RNA-DNA heteroduplex. efSaCas9 can be broadly used in genome-editing applications that require high fidelity. Furthermore, this study provides a general strategy to rapidly evolve other desired CRISPR-Cas9 traits besides enhanced fidelity, to expand the utility of the CRISPR toolkit.</description><subject>Accuracy</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cells</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>DNA</subject><subject>Editing</subject><subject>Engineering and Technology</subject><subject>Fidelity</subject><subject>Funding</subject><subject>Gene Library</subject><subject>Genetic aspects</subject><subject>Genetic Engineering</subject><subject>Genetic Loci</subject><subject>Genetic variation</subject><subject>Genome editing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>HEK293 Cells</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Kidney diseases</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Methods and Resources</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Nucleotides - genetics</subject><subject>Optometry</subject><subject>Phenotype</subject><subject>Reproducibility of Results</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Screening</subject><subject>Software</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Toolkits</subject><subject>Transcriptional Activation - genetics</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLP5KbF-QqhW0K1VUohVXy2tPsl5l48VOEPvvcdi0alAPIB_89cw7nteTZa8xWmDK8cetH0Kn28V-7fyCIoQ440-yU1yysuBClE8frE-yFzFuESJEEvE8O6GkYkzK8jS7uHTNpqidhdb1h_xGL3WUedp2vasd2Hx9yK0LYHrnU7Y8mgDQua7JXZdvhp3ucgNtG19mz2rdRng1zWfZ7ZfPt8vL4ur6YrU8vypMJcu-sEhzXldCGARcC4wpApO2NUM1tdRgrEumqZQGABnOLSISVcAJAmoJp2fZ26PsvvVRTRZERRhN9QjORCJWR8J6vVX74HY6HJTXTv058KFROvTOtKBYVZN1iaUwgFlKqzkmXFSIcYyohCppfZqyDesdWJNMCbqdic5vOrdRjf-pOB01RoH3k0DwPwaIvdq5OPqlO_DD-G5CUcm5HN_97i_08eomqtGpANfVPuU1o6g6ryiRlAs8UotHqDQs7JzxHdQunc8CPswCEtPDr77RQ4xqdfPtP9iv_85ef5-z7Mia4GMMUN_7jJEaO_7OEDV2vJo6PoW9efhH90F3LU5_Az6P-Os</recordid><startdate>20200709</startdate><enddate>20200709</enddate><creator>Xie, Haihua</creator><creator>Ge, Xianglian</creator><creator>Yang, Fayu</creator><creator>Wang, Bang</creator><creator>Li, Shuang</creator><creator>Duan, Jinzhi</creator><creator>Lv, Xiujuan</creator><creator>Cheng, Congsheng</creator><creator>Song, Zongming</creator><creator>Liu, Changbao</creator><creator>Zhao, Junzhao</creator><creator>Zhang, Yu</creator><creator>Wu, Jinyu</creator><creator>Gao, Caixia</creator><creator>Zhang, Jinwei</creator><creator>Gu, Feng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-2588-4108</orcidid><orcidid>https://orcid.org/0000-0002-2114-173X</orcidid><orcidid>https://orcid.org/0000-0002-9600-8407</orcidid><orcidid>https://orcid.org/0000-0003-3169-8248</orcidid></search><sort><creationdate>20200709</creationdate><title>High-fidelity SaCas9 identified by directional screening in human cells</title><author>Xie, Haihua ; Ge, Xianglian ; Yang, Fayu ; Wang, Bang ; Li, Shuang ; Duan, Jinzhi ; Lv, Xiujuan ; Cheng, Congsheng ; Song, Zongming ; Liu, Changbao ; Zhao, Junzhao ; Zhang, Yu ; Wu, Jinyu ; Gao, Caixia ; Zhang, Jinwei ; Gu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-d0a77f688c0e7a81130ec688f40f3d3c11a54a399cee0c77d02906e720e3d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cells</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>DNA</topic><topic>Editing</topic><topic>Engineering and Technology</topic><topic>Fidelity</topic><topic>Funding</topic><topic>Gene Library</topic><topic>Genetic aspects</topic><topic>Genetic Engineering</topic><topic>Genetic Loci</topic><topic>Genetic variation</topic><topic>Genome editing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>HEK293 Cells</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Kidney diseases</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Methods and Resources</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Nucleotides - genetics</topic><topic>Optometry</topic><topic>Phenotype</topic><topic>Reproducibility of Results</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Screening</topic><topic>Software</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Toolkits</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Haihua</creatorcontrib><creatorcontrib>Ge, Xianglian</creatorcontrib><creatorcontrib>Yang, Fayu</creatorcontrib><creatorcontrib>Wang, Bang</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Duan, Jinzhi</creatorcontrib><creatorcontrib>Lv, Xiujuan</creatorcontrib><creatorcontrib>Cheng, Congsheng</creatorcontrib><creatorcontrib>Song, Zongming</creatorcontrib><creatorcontrib>Liu, Changbao</creatorcontrib><creatorcontrib>Zhao, Junzhao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wu, Jinyu</creatorcontrib><creatorcontrib>Gao, Caixia</creatorcontrib><creatorcontrib>Zhang, Jinwei</creatorcontrib><creatorcontrib>Gu, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Haihua</au><au>Ge, Xianglian</au><au>Yang, Fayu</au><au>Wang, Bang</au><au>Li, Shuang</au><au>Duan, Jinzhi</au><au>Lv, Xiujuan</au><au>Cheng, Congsheng</au><au>Song, Zongming</au><au>Liu, Changbao</au><au>Zhao, Junzhao</au><au>Zhang, Yu</au><au>Wu, Jinyu</au><au>Gao, Caixia</au><au>Zhang, Jinwei</au><au>Gu, Feng</au><au>Koo, Bon-Kyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fidelity SaCas9 identified by directional screening in human cells</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-07-09</date><risdate>2020</risdate><volume>18</volume><issue>7</issue><spage>e3000747</spage><epage>e3000747</epage><pages>e3000747-e3000747</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects of wild-type (WT) SaCas9 at single-nucleotide (single-nt) resolution and describe a directional screening system to identify novel SaCas9 variants with desired properties in human cells. Using this system, we identified enhanced-fidelity SaCas9 (efSaCas9) (variant Mut268 harboring the single mutation of N260D), which could effectively distinguish and reject single base-pair mismatches. We demonstrate dramatically reduced off-target effects (approximately 2- to 93-fold improvements) of Mut268 compared to WT using targeted deep-sequencing analyses. To understand the structural origin of the fidelity enhancement, we find that N260, located in the REC3 domain, orchestrates an extensive network of contacts between REC3 and the guide RNA-DNA heteroduplex. efSaCas9 can be broadly used in genome-editing applications that require high fidelity. Furthermore, this study provides a general strategy to rapidly evolve other desired CRISPR-Cas9 traits besides enhanced fidelity, to expand the utility of the CRISPR toolkit.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32644995</pmid><doi>10.1371/journal.pbio.3000747</doi><orcidid>https://orcid.org/0000-0003-2588-4108</orcidid><orcidid>https://orcid.org/0000-0002-2114-173X</orcidid><orcidid>https://orcid.org/0000-0002-9600-8407</orcidid><orcidid>https://orcid.org/0000-0003-3169-8248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2020-07, Vol.18 (7), p.e3000747-e3000747 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2434498748 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Accuracy Bacterial Proteins - metabolism Biology and Life Sciences Cells CRISPR CRISPR-Associated Protein 9 - metabolism Deoxyribonucleic acid Diabetes DNA Editing Engineering and Technology Fidelity Funding Gene Library Genetic aspects Genetic Engineering Genetic Loci Genetic variation Genome editing Genome, Human Genomes Genomics HEK293 Cells Hospitals Humans Identification and classification Kidney diseases Laboratories Methods Methods and Resources Molecular biology Mutation Nucleotides Nucleotides - genetics Optometry Phenotype Reproducibility of Results Research and analysis methods Ribonucleic acid RNA Screening Software Staphylococcus aureus - metabolism Toolkits Transcriptional Activation - genetics |
title | High-fidelity SaCas9 identified by directional screening in human cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fidelity%20SaCas9%20identified%20by%20directional%20screening%20in%20human%20cells&rft.jtitle=PLoS%20biology&rft.au=Xie,%20Haihua&rft.date=2020-07-09&rft.volume=18&rft.issue=7&rft.spage=e3000747&rft.epage=e3000747&rft.pages=e3000747-e3000747&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000747&rft_dat=%3Cgale_plos_%3EA632937818%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c695t-d0a77f688c0e7a81130ec688f40f3d3c11a54a399cee0c77d02906e720e3d273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434498748&rft_id=info:pmid/32644995&rft_galeid=A632937818&rfr_iscdi=true |