Loading…

Beyond tug-of-war: Iron metabolism in cooperative host–microbe interactions

About the Authors: Grischa Y. Chen Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America Janelle S. Ayres * E-mail: jayres@salk.edu A...

Full description

Saved in:
Bibliographic Details
Published in:PLoS pathogens 2020-08, Vol.16 (8), p.e1008698-e1008698
Main Authors: Chen, Grischa Y, Ayres, Janelle S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c638t-b0007c0794a3914f7ffe4c0ca2f646f31dbb20111fd953e43b0b3f8a14c7d2aa3
cites cdi_FETCH-LOGICAL-c638t-b0007c0794a3914f7ffe4c0ca2f646f31dbb20111fd953e43b0b3f8a14c7d2aa3
container_end_page e1008698
container_issue 8
container_start_page e1008698
container_title PLoS pathogens
container_volume 16
creator Chen, Grischa Y
Ayres, Janelle S
description About the Authors: Grischa Y. Chen Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America Janelle S. Ayres * E-mail: jayres@salk.edu Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America ORCID logo http://orcid.org/0000-0002-0809-2494 Introduction Infections induce dramatic rearrangements in host macro- and micronutrient processes [1] and likely reflect host adaptive mechanisms to defend against infection. Alternative functions of microbial siderophores on host physiology Siderophores are molecules that chelate external iron with high affinity and transport iron into microorganisms through dedicated transport systems [10]. [...]siderophores are essential virulence factors for many microbial pathogens [11]. BV, biliverdin; cDC, conventional dendritic cell; CO, carbon monoxide; Ent, enterobactin; FTH, ferritin; glc, glucose; HO-1, heme oxygenase; IR, insulin resistance; RBC, red blood cell. https://doi.org/10.1371/journal.ppat.1008698.g001 Hepcidin in wound repair During acute infections, individuals experience inflammation-dependent hypoferremia [18]. Regulation of iron levels was necessary for proper microbiome composition and mucosal repair because cDC-specific hepcidin-deficient mice were slower to recover following intestinal damage [26]. [...]unlike hepatocyte-derived hepcidin required for systemic infections, cDC-derived hepcidin promotes intestinal homeostasis.
doi_str_mv 10.1371/journal.ppat.1008698
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443593338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243306</galeid><doaj_id>oai_doaj_org_article_e5952e7360bb4777a5381394e46cd508</doaj_id><sourcerecordid>A634243306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-b0007c0794a3914f7ffe4c0ca2f646f31dbb20111fd953e43b0b3f8a14c7d2aa3</originalsourceid><addsrcrecordid>eNqVks1u1DAQxyMEomXhDZCIxAUOWeyMHScckErFx0oFJD7OluOMt66SeLGdQm-8A2_Ik-CwAbGoF-SDrZnf_OfDk2X3KVlTEPTJhZv8qPr1bqfimhJSV019IzumnEMhQLCbf72PsjshXBDCKNDqdnYEpah5yelx9uY5Xrmxy-O0LZwpvij_NN94N-YDRtW63oYht2OunduhV9FeYn7uQvzx7ftgtXctJm9MHh2tG8Pd7JZRfcB7y73KPr188fH0dXH27tXm9OSs0BXUsWgJIUIT0TAFDWVGGINME61KU7HKAO3atiSUUtM1HJBBS1owtaJMi65UClbZg73urndBLpMIsmQMeAMAdSI2e6Jz6kLuvB2Uv5JOWfnL4PxWKh-t7lEib3iJAirStkwIoTjUFBqGrNIdJ7PWsyXb1A7YaRyjV_2B6KFntOdy6y6lYCWQVM8qe7QIePd5whDlYIPGvlcjummuGxjhgpdzrof_oNd3t1BblRqwo3Epr55F5UkFLOkBqRK1voZKp8P0eW5EY5P9IODxQUBiIn6NWzWFIDcf3v8H-_aQZXs2bUwIHs2f2VEi52X-3aScl1kuyww_AduE5e0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443593338</pqid></control><display><type>article</type><title>Beyond tug-of-war: Iron metabolism in cooperative host–microbe interactions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chen, Grischa Y ; Ayres, Janelle S</creator><contributor>Silverman, Neal</contributor><creatorcontrib>Chen, Grischa Y ; Ayres, Janelle S ; Silverman, Neal</creatorcontrib><description>About the Authors: Grischa Y. Chen Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America Janelle S. Ayres * E-mail: jayres@salk.edu Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America ORCID logo http://orcid.org/0000-0002-0809-2494 Introduction Infections induce dramatic rearrangements in host macro- and micronutrient processes [1] and likely reflect host adaptive mechanisms to defend against infection. Alternative functions of microbial siderophores on host physiology Siderophores are molecules that chelate external iron with high affinity and transport iron into microorganisms through dedicated transport systems [10]. [...]siderophores are essential virulence factors for many microbial pathogens [11]. BV, biliverdin; cDC, conventional dendritic cell; CO, carbon monoxide; Ent, enterobactin; FTH, ferritin; glc, glucose; HO-1, heme oxygenase; IR, insulin resistance; RBC, red blood cell. https://doi.org/10.1371/journal.ppat.1008698.g001 Hepcidin in wound repair During acute infections, individuals experience inflammation-dependent hypoferremia [18]. Regulation of iron levels was necessary for proper microbiome composition and mucosal repair because cDC-specific hepcidin-deficient mice were slower to recover following intestinal damage [26]. [...]unlike hepatocyte-derived hepcidin required for systemic infections, cDC-derived hepcidin promotes intestinal homeostasis.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008698</identifier><identifier>PMID: 32785251</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Bacterial infections ; Biliverdin ; Biology and Life Sciences ; Biosynthesis ; Carbon monoxide ; Cell metabolism ; Cooperation ; Dendritic cells ; Enterobactin ; Erythrocytes ; Ferritin ; Gene expression ; Glucose ; Health aspects ; Heme ; Hepcidin ; Homeostasis ; Host-parasite relationships ; Immune response ; Infections ; Insulin ; Insulin resistance ; Intestine ; Iron ; Iron (Nutrient) ; Malaria ; Medicine and Health Sciences ; Metabolism ; Microbiomes ; Microbiota ; Microorganisms ; Mucosa ; Neutrophils ; Observations ; Oxygenase ; Pathogenesis ; Pathogens ; Pearls ; Physiology ; Red blood cells ; Repair ; Sepsis ; Siderophores ; Transportation systems ; Virulence ; Virulence factors ; Wound healing</subject><ispartof>PLoS pathogens, 2020-08, Vol.16 (8), p.e1008698-e1008698</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Chen, Ayres. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Chen, Ayres 2020 Chen, Ayres</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-b0007c0794a3914f7ffe4c0ca2f646f31dbb20111fd953e43b0b3f8a14c7d2aa3</citedby><cites>FETCH-LOGICAL-c638t-b0007c0794a3914f7ffe4c0ca2f646f31dbb20111fd953e43b0b3f8a14c7d2aa3</cites><orcidid>0000-0002-0809-2494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2443593338/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2443593338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Silverman, Neal</contributor><creatorcontrib>Chen, Grischa Y</creatorcontrib><creatorcontrib>Ayres, Janelle S</creatorcontrib><title>Beyond tug-of-war: Iron metabolism in cooperative host–microbe interactions</title><title>PLoS pathogens</title><description>About the Authors: Grischa Y. Chen Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America Janelle S. Ayres * E-mail: jayres@salk.edu Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America ORCID logo http://orcid.org/0000-0002-0809-2494 Introduction Infections induce dramatic rearrangements in host macro- and micronutrient processes [1] and likely reflect host adaptive mechanisms to defend against infection. Alternative functions of microbial siderophores on host physiology Siderophores are molecules that chelate external iron with high affinity and transport iron into microorganisms through dedicated transport systems [10]. [...]siderophores are essential virulence factors for many microbial pathogens [11]. BV, biliverdin; cDC, conventional dendritic cell; CO, carbon monoxide; Ent, enterobactin; FTH, ferritin; glc, glucose; HO-1, heme oxygenase; IR, insulin resistance; RBC, red blood cell. https://doi.org/10.1371/journal.ppat.1008698.g001 Hepcidin in wound repair During acute infections, individuals experience inflammation-dependent hypoferremia [18]. Regulation of iron levels was necessary for proper microbiome composition and mucosal repair because cDC-specific hepcidin-deficient mice were slower to recover following intestinal damage [26]. [...]unlike hepatocyte-derived hepcidin required for systemic infections, cDC-derived hepcidin promotes intestinal homeostasis.</description><subject>Bacterial infections</subject><subject>Biliverdin</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbon monoxide</subject><subject>Cell metabolism</subject><subject>Cooperation</subject><subject>Dendritic cells</subject><subject>Enterobactin</subject><subject>Erythrocytes</subject><subject>Ferritin</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Health aspects</subject><subject>Heme</subject><subject>Hepcidin</subject><subject>Homeostasis</subject><subject>Host-parasite relationships</subject><subject>Immune response</subject><subject>Infections</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Intestine</subject><subject>Iron</subject><subject>Iron (Nutrient)</subject><subject>Malaria</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Mucosa</subject><subject>Neutrophils</subject><subject>Observations</subject><subject>Oxygenase</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Pearls</subject><subject>Physiology</subject><subject>Red blood cells</subject><subject>Repair</subject><subject>Sepsis</subject><subject>Siderophores</subject><subject>Transportation systems</subject><subject>Virulence</subject><subject>Virulence factors</subject><subject>Wound healing</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVks1u1DAQxyMEomXhDZCIxAUOWeyMHScckErFx0oFJD7OluOMt66SeLGdQm-8A2_Ik-CwAbGoF-SDrZnf_OfDk2X3KVlTEPTJhZv8qPr1bqfimhJSV019IzumnEMhQLCbf72PsjshXBDCKNDqdnYEpah5yelx9uY5Xrmxy-O0LZwpvij_NN94N-YDRtW63oYht2OunduhV9FeYn7uQvzx7ftgtXctJm9MHh2tG8Pd7JZRfcB7y73KPr188fH0dXH27tXm9OSs0BXUsWgJIUIT0TAFDWVGGINME61KU7HKAO3atiSUUtM1HJBBS1owtaJMi65UClbZg73urndBLpMIsmQMeAMAdSI2e6Jz6kLuvB2Uv5JOWfnL4PxWKh-t7lEib3iJAirStkwIoTjUFBqGrNIdJ7PWsyXb1A7YaRyjV_2B6KFntOdy6y6lYCWQVM8qe7QIePd5whDlYIPGvlcjummuGxjhgpdzrof_oNd3t1BblRqwo3Epr55F5UkFLOkBqRK1voZKp8P0eW5EY5P9IODxQUBiIn6NWzWFIDcf3v8H-_aQZXs2bUwIHs2f2VEi52X-3aScl1kuyww_AduE5e0</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Chen, Grischa Y</creator><creator>Ayres, Janelle S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0809-2494</orcidid></search><sort><creationdate>20200812</creationdate><title>Beyond tug-of-war: Iron metabolism in cooperative host–microbe interactions</title><author>Chen, Grischa Y ; Ayres, Janelle S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-b0007c0794a3914f7ffe4c0ca2f646f31dbb20111fd953e43b0b3f8a14c7d2aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacterial infections</topic><topic>Biliverdin</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbon monoxide</topic><topic>Cell metabolism</topic><topic>Cooperation</topic><topic>Dendritic cells</topic><topic>Enterobactin</topic><topic>Erythrocytes</topic><topic>Ferritin</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Health aspects</topic><topic>Heme</topic><topic>Hepcidin</topic><topic>Homeostasis</topic><topic>Host-parasite relationships</topic><topic>Immune response</topic><topic>Infections</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Intestine</topic><topic>Iron</topic><topic>Iron (Nutrient)</topic><topic>Malaria</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Mucosa</topic><topic>Neutrophils</topic><topic>Observations</topic><topic>Oxygenase</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Pearls</topic><topic>Physiology</topic><topic>Red blood cells</topic><topic>Repair</topic><topic>Sepsis</topic><topic>Siderophores</topic><topic>Transportation systems</topic><topic>Virulence</topic><topic>Virulence factors</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Grischa Y</creatorcontrib><creatorcontrib>Ayres, Janelle S</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Grischa Y</au><au>Ayres, Janelle S</au><au>Silverman, Neal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond tug-of-war: Iron metabolism in cooperative host–microbe interactions</atitle><jtitle>PLoS pathogens</jtitle><date>2020-08-12</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008698</spage><epage>e1008698</epage><pages>e1008698-e1008698</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>About the Authors: Grischa Y. Chen Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America Janelle S. Ayres * E-mail: jayres@salk.edu Affiliation: Molecular and Systems Physiology Lab, Gene Expression Lab, NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America ORCID logo http://orcid.org/0000-0002-0809-2494 Introduction Infections induce dramatic rearrangements in host macro- and micronutrient processes [1] and likely reflect host adaptive mechanisms to defend against infection. Alternative functions of microbial siderophores on host physiology Siderophores are molecules that chelate external iron with high affinity and transport iron into microorganisms through dedicated transport systems [10]. [...]siderophores are essential virulence factors for many microbial pathogens [11]. BV, biliverdin; cDC, conventional dendritic cell; CO, carbon monoxide; Ent, enterobactin; FTH, ferritin; glc, glucose; HO-1, heme oxygenase; IR, insulin resistance; RBC, red blood cell. https://doi.org/10.1371/journal.ppat.1008698.g001 Hepcidin in wound repair During acute infections, individuals experience inflammation-dependent hypoferremia [18]. Regulation of iron levels was necessary for proper microbiome composition and mucosal repair because cDC-specific hepcidin-deficient mice were slower to recover following intestinal damage [26]. [...]unlike hepatocyte-derived hepcidin required for systemic infections, cDC-derived hepcidin promotes intestinal homeostasis.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32785251</pmid><doi>10.1371/journal.ppat.1008698</doi><orcidid>https://orcid.org/0000-0002-0809-2494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-08, Vol.16 (8), p.e1008698-e1008698
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2443593338
source Publicly Available Content Database; PubMed Central
subjects Bacterial infections
Biliverdin
Biology and Life Sciences
Biosynthesis
Carbon monoxide
Cell metabolism
Cooperation
Dendritic cells
Enterobactin
Erythrocytes
Ferritin
Gene expression
Glucose
Health aspects
Heme
Hepcidin
Homeostasis
Host-parasite relationships
Immune response
Infections
Insulin
Insulin resistance
Intestine
Iron
Iron (Nutrient)
Malaria
Medicine and Health Sciences
Metabolism
Microbiomes
Microbiota
Microorganisms
Mucosa
Neutrophils
Observations
Oxygenase
Pathogenesis
Pathogens
Pearls
Physiology
Red blood cells
Repair
Sepsis
Siderophores
Transportation systems
Virulence
Virulence factors
Wound healing
title Beyond tug-of-war: Iron metabolism in cooperative host–microbe interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20tug-of-war:%20Iron%20metabolism%20in%20cooperative%20host%E2%80%93microbe%20interactions&rft.jtitle=PLoS%20pathogens&rft.au=Chen,%20Grischa%20Y&rft.date=2020-08-12&rft.volume=16&rft.issue=8&rft.spage=e1008698&rft.epage=e1008698&rft.pages=e1008698-e1008698&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008698&rft_dat=%3Cgale_plos_%3EA634243306%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c638t-b0007c0794a3914f7ffe4c0ca2f646f31dbb20111fd953e43b0b3f8a14c7d2aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443593338&rft_id=info:pmid/32785251&rft_galeid=A634243306&rfr_iscdi=true