Loading…
Inferring the ancestry of parents and grandparents from genetic data
Inference of admixture proportions is a classical statistical problem in population genetics. Standard methods implicitly assume that both parents of an individual have the same admixture fraction. However, this is rarely the case in real data. In this paper we show that the distribution of admixtur...
Saved in:
Published in: | PLoS computational biology 2020-08, Vol.16 (8), p.e1008065-e1008065 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c610t-584291814ef8042ab416c7e9d7f68da6fb4a26151985e59a27aa8dcf68fde0ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c610t-584291814ef8042ab416c7e9d7f68da6fb4a26151985e59a27aa8dcf68fde0ea3 |
container_end_page | e1008065 |
container_issue | 8 |
container_start_page | e1008065 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Pei, Jingwen Zhang, Yiming Nielsen, Rasmus Wu, Yufeng |
description | Inference of admixture proportions is a classical statistical problem in population genetics. Standard methods implicitly assume that both parents of an individual have the same admixture fraction. However, this is rarely the case in real data. In this paper we show that the distribution of admixture tract lengths in a genome contains information about the admixture proportions of the ancestors of an individual. We develop a Hidden Markov Model (HMM) framework for estimating the admixture proportions of the immediate ancestors of an individual, i.e. a type of decomposition of an individual's admixture proportions into further subsets of ancestral proportions in the ancestors. Based on a genealogical model for admixture tracts, we develop an efficient algorithm for computing the sampling probability of the genome from a single individual, as a function of the admixture proportions of the ancestors of this individual. This allows us to perform probabilistic inference of admixture proportions of ancestors only using the genome of an extant individual. We perform extensive simulations to quantify the error in the estimation of ancestral admixture proportions under various conditions. To illustrate the utility of the method, we apply it to real genetic data. |
doi_str_mv | 10.1371/journal.pcbi.1008065 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443611455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243235</galeid><doaj_id>oai_doaj_org_article_764401046d504658b19e717cb11d9c4d</doaj_id><sourcerecordid>A634243235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-584291814ef8042ab416c7e9d7f68da6fb4a26151985e59a27aa8dcf68fde0ea3</originalsourceid><addsrcrecordid>eNqVUtuKFDEQbURx19E_EGzwZX2YMencul-EZb0NLApenkN1UunN0N0Zk25x_96M0yuO-CKBSlF16lSdooriKSUbyhR9uQtzHKHf7E3rN5SQmkhxrzinQrC1YqK-_4d_VjxKaUdIdhv5sDhjlWoUYeq8eL0dHcbox66cbrCE0WCa4m0ZXLmHiOOUcsyWXcz2LuBiGMoOR5y8KS1M8Lh44KBP-GT5V8XXt2--XL1fX398t726vF4bScm0FjWvGlpTjq4mvIKWU2kUNlY5WVuQruVQSSpoUwsUDVQKoLYmJ51FgsBWxbMj774PSS8LSLrinElKeVa7KrZHhA2w0_voB4i3OoDXvwIhdhpiHrtHrSTnhBIurchG1C1tUFFlWkptY7jNXK-WbnM7oDVZe4T-hPQ0M_ob3YXvWnHeCEIzwcVCEMO3Oe9VDz4Z7HsYMcyHuRnnSqqqydDnf0H_rW5zRHWQBfjRhdzX5Gdx8CaM6HyOX0rGM3XFDgUvTgoyZsIfUwdzSnr7-dN_YD-cYvkRa2JIKaL7vRVK9OE678bXh-vUy3Wyn2Ya1cQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443611455</pqid></control><display><type>article</type><title>Inferring the ancestry of parents and grandparents from genetic data</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Pei, Jingwen ; Zhang, Yiming ; Nielsen, Rasmus ; Wu, Yufeng</creator><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Pei, Jingwen ; Zhang, Yiming ; Nielsen, Rasmus ; Wu, Yufeng ; Kosakovsky Pond, Sergei L.</creatorcontrib><description>Inference of admixture proportions is a classical statistical problem in population genetics. Standard methods implicitly assume that both parents of an individual have the same admixture fraction. However, this is rarely the case in real data. In this paper we show that the distribution of admixture tract lengths in a genome contains information about the admixture proportions of the ancestors of an individual. We develop a Hidden Markov Model (HMM) framework for estimating the admixture proportions of the immediate ancestors of an individual, i.e. a type of decomposition of an individual's admixture proportions into further subsets of ancestral proportions in the ancestors. Based on a genealogical model for admixture tracts, we develop an efficient algorithm for computing the sampling probability of the genome from a single individual, as a function of the admixture proportions of the ancestors of this individual. This allows us to perform probabilistic inference of admixture proportions of ancestors only using the genome of an extant individual. We perform extensive simulations to quantify the error in the estimation of ancestral admixture proportions under various conditions. To illustrate the utility of the method, we apply it to real genetic data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008065</identifier><identifier>PMID: 32797037</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Computer and Information Sciences ; Computer science ; Computer simulation ; Computers ; Engineering and Technology ; Families & family life ; Family relations ; Genealogy ; Genetic aspects ; Genetics ; Genomes ; Genotype & phenotype ; Grandparents ; Haplotypes ; Markov analysis ; Markov chains ; Markov processes ; Methods ; Parents & parenting ; Physical sciences ; Population ; Population genetics ; Probabilistic inference ; Research and Analysis Methods ; Software ; Statistical analysis ; Statistical inference</subject><ispartof>PLoS computational biology, 2020-08, Vol.16 (8), p.e1008065-e1008065</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Pei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Pei et al 2020 Pei et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-584291814ef8042ab416c7e9d7f68da6fb4a26151985e59a27aa8dcf68fde0ea3</citedby><cites>FETCH-LOGICAL-c610t-584291814ef8042ab416c7e9d7f68da6fb4a26151985e59a27aa8dcf68fde0ea3</cites><orcidid>0000-0001-9735-0418 ; 0000-0003-4988-3521 ; 0000-0002-7657-0144 ; 0000-0003-0513-6591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2443611455/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2443611455?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Pei, Jingwen</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><creatorcontrib>Wu, Yufeng</creatorcontrib><title>Inferring the ancestry of parents and grandparents from genetic data</title><title>PLoS computational biology</title><description>Inference of admixture proportions is a classical statistical problem in population genetics. Standard methods implicitly assume that both parents of an individual have the same admixture fraction. However, this is rarely the case in real data. In this paper we show that the distribution of admixture tract lengths in a genome contains information about the admixture proportions of the ancestors of an individual. We develop a Hidden Markov Model (HMM) framework for estimating the admixture proportions of the immediate ancestors of an individual, i.e. a type of decomposition of an individual's admixture proportions into further subsets of ancestral proportions in the ancestors. Based on a genealogical model for admixture tracts, we develop an efficient algorithm for computing the sampling probability of the genome from a single individual, as a function of the admixture proportions of the ancestors of this individual. This allows us to perform probabilistic inference of admixture proportions of ancestors only using the genome of an extant individual. We perform extensive simulations to quantify the error in the estimation of ancestral admixture proportions under various conditions. To illustrate the utility of the method, we apply it to real genetic data.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Engineering and Technology</subject><subject>Families & family life</subject><subject>Family relations</subject><subject>Genealogy</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Grandparents</subject><subject>Haplotypes</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Methods</subject><subject>Parents & parenting</subject><subject>Physical sciences</subject><subject>Population</subject><subject>Population genetics</subject><subject>Probabilistic inference</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVUtuKFDEQbURx19E_EGzwZX2YMencul-EZb0NLApenkN1UunN0N0Zk25x_96M0yuO-CKBSlF16lSdooriKSUbyhR9uQtzHKHf7E3rN5SQmkhxrzinQrC1YqK-_4d_VjxKaUdIdhv5sDhjlWoUYeq8eL0dHcbox66cbrCE0WCa4m0ZXLmHiOOUcsyWXcz2LuBiGMoOR5y8KS1M8Lh44KBP-GT5V8XXt2--XL1fX398t726vF4bScm0FjWvGlpTjq4mvIKWU2kUNlY5WVuQruVQSSpoUwsUDVQKoLYmJ51FgsBWxbMj774PSS8LSLrinElKeVa7KrZHhA2w0_voB4i3OoDXvwIhdhpiHrtHrSTnhBIurchG1C1tUFFlWkptY7jNXK-WbnM7oDVZe4T-hPQ0M_ob3YXvWnHeCEIzwcVCEMO3Oe9VDz4Z7HsYMcyHuRnnSqqqydDnf0H_rW5zRHWQBfjRhdzX5Gdx8CaM6HyOX0rGM3XFDgUvTgoyZsIfUwdzSnr7-dN_YD-cYvkRa2JIKaL7vRVK9OE678bXh-vUy3Wyn2Ya1cQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Pei, Jingwen</creator><creator>Zhang, Yiming</creator><creator>Nielsen, Rasmus</creator><creator>Wu, Yufeng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9735-0418</orcidid><orcidid>https://orcid.org/0000-0003-4988-3521</orcidid><orcidid>https://orcid.org/0000-0002-7657-0144</orcidid><orcidid>https://orcid.org/0000-0003-0513-6591</orcidid></search><sort><creationdate>20200801</creationdate><title>Inferring the ancestry of parents and grandparents from genetic data</title><author>Pei, Jingwen ; Zhang, Yiming ; Nielsen, Rasmus ; Wu, Yufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-584291814ef8042ab416c7e9d7f68da6fb4a26151985e59a27aa8dcf68fde0ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Engineering and Technology</topic><topic>Families & family life</topic><topic>Family relations</topic><topic>Genealogy</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Grandparents</topic><topic>Haplotypes</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Methods</topic><topic>Parents & parenting</topic><topic>Physical sciences</topic><topic>Population</topic><topic>Population genetics</topic><topic>Probabilistic inference</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Jingwen</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><creatorcontrib>Wu, Yufeng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Jingwen</au><au>Zhang, Yiming</au><au>Nielsen, Rasmus</au><au>Wu, Yufeng</au><au>Kosakovsky Pond, Sergei L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring the ancestry of parents and grandparents from genetic data</atitle><jtitle>PLoS computational biology</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008065</spage><epage>e1008065</epage><pages>e1008065-e1008065</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Inference of admixture proportions is a classical statistical problem in population genetics. Standard methods implicitly assume that both parents of an individual have the same admixture fraction. However, this is rarely the case in real data. In this paper we show that the distribution of admixture tract lengths in a genome contains information about the admixture proportions of the ancestors of an individual. We develop a Hidden Markov Model (HMM) framework for estimating the admixture proportions of the immediate ancestors of an individual, i.e. a type of decomposition of an individual's admixture proportions into further subsets of ancestral proportions in the ancestors. Based on a genealogical model for admixture tracts, we develop an efficient algorithm for computing the sampling probability of the genome from a single individual, as a function of the admixture proportions of the ancestors of this individual. This allows us to perform probabilistic inference of admixture proportions of ancestors only using the genome of an extant individual. We perform extensive simulations to quantify the error in the estimation of ancestral admixture proportions under various conditions. To illustrate the utility of the method, we apply it to real genetic data.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32797037</pmid><doi>10.1371/journal.pcbi.1008065</doi><orcidid>https://orcid.org/0000-0001-9735-0418</orcidid><orcidid>https://orcid.org/0000-0003-4988-3521</orcidid><orcidid>https://orcid.org/0000-0002-7657-0144</orcidid><orcidid>https://orcid.org/0000-0003-0513-6591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-08, Vol.16 (8), p.e1008065-e1008065 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2443611455 |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Algorithms Biology and Life Sciences Computer and Information Sciences Computer science Computer simulation Computers Engineering and Technology Families & family life Family relations Genealogy Genetic aspects Genetics Genomes Genotype & phenotype Grandparents Haplotypes Markov analysis Markov chains Markov processes Methods Parents & parenting Physical sciences Population Population genetics Probabilistic inference Research and Analysis Methods Software Statistical analysis Statistical inference |
title | Inferring the ancestry of parents and grandparents from genetic data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20the%20ancestry%20of%20parents%20and%20grandparents%20from%20genetic%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Pei,%20Jingwen&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=e1008065&rft.epage=e1008065&rft.pages=e1008065-e1008065&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008065&rft_dat=%3Cgale_plos_%3EA634243235%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c610t-584291814ef8042ab416c7e9d7f68da6fb4a26151985e59a27aa8dcf68fde0ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443611455&rft_id=info:pmid/32797037&rft_galeid=A634243235&rfr_iscdi=true |