Loading…

Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance

Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of C...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-09, Vol.15 (9), p.e0239617
Main Authors: Liu, Peng-Hu, Huang, Zai-Xing, Luo, Xu-Hui, Chen, Hua, Weng, Bo-Qi, Wang, Yi-Xiang, Chen, Li-Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3
cites cdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3
container_end_page
container_issue 9
container_start_page e0239617
container_title PloS one
container_volume 15
creator Liu, Peng-Hu
Huang, Zai-Xing
Luo, Xu-Hui
Chen, Hua
Weng, Bo-Qi
Wang, Yi-Xiang
Chen, Li-Song
description Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.
doi_str_mv 10.1371/journal.pone.0239617
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2447246188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636883568</galeid><doaj_id>oai_doaj_org_article_c47af30103da459ab57c2908fed297dd</doaj_id><sourcerecordid>A636883568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</originalsourceid><addsrcrecordid>eNp1Uk2P0zAUjBCIXQr_AIElLnBoiePESS5IVcXHSitxgbP1Yj-3rmK72ElX-_f4ZTg0W20lUA6O582bN7Yny17TfEVZTT_u_Rgc9KuDd7jKC9ZyWj_JrmnLiiUvcvb00f9V9iLGfZ5XrOH8eXbFiralnJbX2e-NtwcIMJgjkiGAizKYw-AtEkjq99FEEvCI0EciwSmjYECyRYcT3qeNIoNPJWXNaAlIOdoxwca7JDDVekyqEolxZLjzBHrrE27HuAveW_J-vYVg5BhJFyCa3qBLMz-QmMwYF8mdGXZEepe2cTBuex51Vn6ZPdPJHr6a10X288vnH5tvy9vvX28269ulrFo2LDmlAF3bqUYzjrpkOdcadFF3smFdp1kusW14rRSjlZIaZallVbUlS_USFVtkb0-6h95HMV9_FEVZ1kXJadMkxs2JoTzsxSEYC-FeeDDiL-DDVkAYjOxRyLKGNJLmTEFZtdBVtSzavNGoinbysMg-zdPGzqKSON1AfyF6WXFmJ7b-KOoqZaFiSeDdLBD8rxHj8B_LM2sLyZVx2icxaU2UYs0ZT4yKT6zVP1jpU2hNehzUJuEXDeWpQQYfY0B9Nk5zMcX3wYyY4ivm-Ka2N48PfW56yCv7A8iL9To</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447246188</pqid></control><display><type>article</type><title>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Liu, Peng-Hu ; Huang, Zai-Xing ; Luo, Xu-Hui ; Chen, Hua ; Weng, Bo-Qi ; Wang, Yi-Xiang ; Chen, Li-Song</creator><contributor>Pecoraro, Lorenzo</contributor><creatorcontrib>Liu, Peng-Hu ; Huang, Zai-Xing ; Luo, Xu-Hui ; Chen, Hua ; Weng, Bo-Qi ; Wang, Yi-Xiang ; Chen, Li-Song ; Pecoraro, Lorenzo</creatorcontrib><description>Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0239617</identifier><identifier>PMID: 32991614</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Agaricus ; Agaricus - drug effects ; Agaricus - genetics ; Agaricus - metabolism ; Agaricus brasiliensis ; Agriculture ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Bioaccumulation ; Biology and Life Sciences ; Cadmium ; Cadmium - metabolism ; Cadmium - toxicity ; Cell cycle ; Cell walls ; Cultivars ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; DNA Repair - drug effects ; DNA Replication - drug effects ; Drug Tolerance ; Ecology ; Efflux ; Engineering research ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genes ; Genetic aspects ; Glutathione ; Glutathione transferase ; Glutathione Transferase - genetics ; Glutathione Transferase - metabolism ; Laboratories ; Molecular biology ; Molecular modelling ; Mushrooms ; Mycelia ; Mycelium - chemistry ; Mycelium - drug effects ; Mycelium - growth &amp; development ; Organic acids ; Physical Sciences ; Physiological aspects ; Physiology ; Plant hardiness ; Pollution tolerance ; Polysaccharides ; Polysaccharides - metabolism ; Proteins ; Repair ; Replication ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA, Fungal - chemistry ; RNA, Fungal - metabolism ; RNA-Seq ; Saccharides ; Software ; Stability ; Sulfur ; Transcriptome ; Trehalose ; Zinc</subject><ispartof>PloS one, 2020-09, Vol.15 (9), p.e0239617</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Liu et al 2020 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</citedby><cites>FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2447246188/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2447246188?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32991614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pecoraro, Lorenzo</contributor><creatorcontrib>Liu, Peng-Hu</creatorcontrib><creatorcontrib>Huang, Zai-Xing</creatorcontrib><creatorcontrib>Luo, Xu-Hui</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Weng, Bo-Qi</creatorcontrib><creatorcontrib>Wang, Yi-Xiang</creatorcontrib><creatorcontrib>Chen, Li-Song</creatorcontrib><title>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.</description><subject>Accumulation</subject><subject>Agaricus</subject><subject>Agaricus - drug effects</subject><subject>Agaricus - genetics</subject><subject>Agaricus - metabolism</subject><subject>Agaricus brasiliensis</subject><subject>Agriculture</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Bioaccumulation</subject><subject>Biology and Life Sciences</subject><subject>Cadmium</subject><subject>Cadmium - metabolism</subject><subject>Cadmium - toxicity</subject><subject>Cell cycle</subject><subject>Cell walls</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>DNA Replication - drug effects</subject><subject>Drug Tolerance</subject><subject>Ecology</subject><subject>Efflux</subject><subject>Engineering research</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glutathione</subject><subject>Glutathione transferase</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - metabolism</subject><subject>Laboratories</subject><subject>Molecular biology</subject><subject>Molecular modelling</subject><subject>Mushrooms</subject><subject>Mycelia</subject><subject>Mycelium - chemistry</subject><subject>Mycelium - drug effects</subject><subject>Mycelium - growth &amp; development</subject><subject>Organic acids</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plant hardiness</subject><subject>Pollution tolerance</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><subject>Proteins</subject><subject>Repair</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA, Fungal - chemistry</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA-Seq</subject><subject>Saccharides</subject><subject>Software</subject><subject>Stability</subject><subject>Sulfur</subject><subject>Transcriptome</subject><subject>Trehalose</subject><subject>Zinc</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk2P0zAUjBCIXQr_AIElLnBoiePESS5IVcXHSitxgbP1Yj-3rmK72ElX-_f4ZTg0W20lUA6O582bN7Yny17TfEVZTT_u_Rgc9KuDd7jKC9ZyWj_JrmnLiiUvcvb00f9V9iLGfZ5XrOH8eXbFiralnJbX2e-NtwcIMJgjkiGAizKYw-AtEkjq99FEEvCI0EciwSmjYECyRYcT3qeNIoNPJWXNaAlIOdoxwca7JDDVekyqEolxZLjzBHrrE27HuAveW_J-vYVg5BhJFyCa3qBLMz-QmMwYF8mdGXZEepe2cTBuex51Vn6ZPdPJHr6a10X288vnH5tvy9vvX28269ulrFo2LDmlAF3bqUYzjrpkOdcadFF3smFdp1kusW14rRSjlZIaZallVbUlS_USFVtkb0-6h95HMV9_FEVZ1kXJadMkxs2JoTzsxSEYC-FeeDDiL-DDVkAYjOxRyLKGNJLmTEFZtdBVtSzavNGoinbysMg-zdPGzqKSON1AfyF6WXFmJ7b-KOoqZaFiSeDdLBD8rxHj8B_LM2sLyZVx2icxaU2UYs0ZT4yKT6zVP1jpU2hNehzUJuEXDeWpQQYfY0B9Nk5zMcX3wYyY4ivm-Ka2N48PfW56yCv7A8iL9To</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Liu, Peng-Hu</creator><creator>Huang, Zai-Xing</creator><creator>Luo, Xu-Hui</creator><creator>Chen, Hua</creator><creator>Weng, Bo-Qi</creator><creator>Wang, Yi-Xiang</creator><creator>Chen, Li-Song</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200929</creationdate><title>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</title><author>Liu, Peng-Hu ; Huang, Zai-Xing ; Luo, Xu-Hui ; Chen, Hua ; Weng, Bo-Qi ; Wang, Yi-Xiang ; Chen, Li-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Agaricus</topic><topic>Agaricus - drug effects</topic><topic>Agaricus - genetics</topic><topic>Agaricus - metabolism</topic><topic>Agaricus brasiliensis</topic><topic>Agriculture</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Bioaccumulation</topic><topic>Biology and Life Sciences</topic><topic>Cadmium</topic><topic>Cadmium - metabolism</topic><topic>Cadmium - toxicity</topic><topic>Cell cycle</topic><topic>Cell walls</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>DNA Replication - drug effects</topic><topic>Drug Tolerance</topic><topic>Ecology</topic><topic>Efflux</topic><topic>Engineering research</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glutathione</topic><topic>Glutathione transferase</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - metabolism</topic><topic>Laboratories</topic><topic>Molecular biology</topic><topic>Molecular modelling</topic><topic>Mushrooms</topic><topic>Mycelia</topic><topic>Mycelium - chemistry</topic><topic>Mycelium - drug effects</topic><topic>Mycelium - growth &amp; development</topic><topic>Organic acids</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plant hardiness</topic><topic>Pollution tolerance</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><topic>Proteins</topic><topic>Repair</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA, Fungal - chemistry</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA-Seq</topic><topic>Saccharides</topic><topic>Software</topic><topic>Stability</topic><topic>Sulfur</topic><topic>Transcriptome</topic><topic>Trehalose</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peng-Hu</creatorcontrib><creatorcontrib>Huang, Zai-Xing</creatorcontrib><creatorcontrib>Luo, Xu-Hui</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Weng, Bo-Qi</creatorcontrib><creatorcontrib>Wang, Yi-Xiang</creatorcontrib><creatorcontrib>Chen, Li-Song</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peng-Hu</au><au>Huang, Zai-Xing</au><au>Luo, Xu-Hui</au><au>Chen, Hua</au><au>Weng, Bo-Qi</au><au>Wang, Yi-Xiang</au><au>Chen, Li-Song</au><au>Pecoraro, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-09-29</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>e0239617</spage><pages>e0239617-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32991614</pmid><doi>10.1371/journal.pone.0239617</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-09, Vol.15 (9), p.e0239617
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2447246188
source Open Access: PubMed Central; Publicly Available Content Database
subjects Accumulation
Agaricus
Agaricus - drug effects
Agaricus - genetics
Agaricus - metabolism
Agaricus brasiliensis
Agriculture
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Bioaccumulation
Biology and Life Sciences
Cadmium
Cadmium - metabolism
Cadmium - toxicity
Cell cycle
Cell walls
Cultivars
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA repair
DNA Repair - drug effects
DNA Replication - drug effects
Drug Tolerance
Ecology
Efflux
Engineering research
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Fungal
Genes
Genetic aspects
Glutathione
Glutathione transferase
Glutathione Transferase - genetics
Glutathione Transferase - metabolism
Laboratories
Molecular biology
Molecular modelling
Mushrooms
Mycelia
Mycelium - chemistry
Mycelium - drug effects
Mycelium - growth & development
Organic acids
Physical Sciences
Physiological aspects
Physiology
Plant hardiness
Pollution tolerance
Polysaccharides
Polysaccharides - metabolism
Proteins
Repair
Replication
Ribonucleic acid
RNA
RNA sequencing
RNA, Fungal - chemistry
RNA, Fungal - metabolism
RNA-Seq
Saccharides
Software
Stability
Sulfur
Transcriptome
Trehalose
Zinc
title Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptome%20analysis%20reveals%20candidate%20genes%20related%20to%20cadmium%20accumulation%20and%20tolerance%20in%20two%20almond%20mushroom%20(Agaricus%20brasiliensis)%20strains%20with%20contrasting%20cadmium%20tolerance&rft.jtitle=PloS%20one&rft.au=Liu,%20Peng-Hu&rft.date=2020-09-29&rft.volume=15&rft.issue=9&rft.spage=e0239617&rft.pages=e0239617-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0239617&rft_dat=%3Cgale_plos_%3EA636883568%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447246188&rft_id=info:pmid/32991614&rft_galeid=A636883568&rfr_iscdi=true