Loading…
Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance
Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of C...
Saved in:
Published in: | PloS one 2020-09, Vol.15 (9), p.e0239617 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3 |
container_end_page | |
container_issue | 9 |
container_start_page | e0239617 |
container_title | PloS one |
container_volume | 15 |
creator | Liu, Peng-Hu Huang, Zai-Xing Luo, Xu-Hui Chen, Hua Weng, Bo-Qi Wang, Yi-Xiang Chen, Li-Song |
description | Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance. |
doi_str_mv | 10.1371/journal.pone.0239617 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2447246188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636883568</galeid><doaj_id>oai_doaj_org_article_c47af30103da459ab57c2908fed297dd</doaj_id><sourcerecordid>A636883568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</originalsourceid><addsrcrecordid>eNp1Uk2P0zAUjBCIXQr_AIElLnBoiePESS5IVcXHSitxgbP1Yj-3rmK72ElX-_f4ZTg0W20lUA6O582bN7Yny17TfEVZTT_u_Rgc9KuDd7jKC9ZyWj_JrmnLiiUvcvb00f9V9iLGfZ5XrOH8eXbFiralnJbX2e-NtwcIMJgjkiGAizKYw-AtEkjq99FEEvCI0EciwSmjYECyRYcT3qeNIoNPJWXNaAlIOdoxwca7JDDVekyqEolxZLjzBHrrE27HuAveW_J-vYVg5BhJFyCa3qBLMz-QmMwYF8mdGXZEepe2cTBuex51Vn6ZPdPJHr6a10X288vnH5tvy9vvX28269ulrFo2LDmlAF3bqUYzjrpkOdcadFF3smFdp1kusW14rRSjlZIaZallVbUlS_USFVtkb0-6h95HMV9_FEVZ1kXJadMkxs2JoTzsxSEYC-FeeDDiL-DDVkAYjOxRyLKGNJLmTEFZtdBVtSzavNGoinbysMg-zdPGzqKSON1AfyF6WXFmJ7b-KOoqZaFiSeDdLBD8rxHj8B_LM2sLyZVx2icxaU2UYs0ZT4yKT6zVP1jpU2hNehzUJuEXDeWpQQYfY0B9Nk5zMcX3wYyY4ivm-Ka2N48PfW56yCv7A8iL9To</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447246188</pqid></control><display><type>article</type><title>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Liu, Peng-Hu ; Huang, Zai-Xing ; Luo, Xu-Hui ; Chen, Hua ; Weng, Bo-Qi ; Wang, Yi-Xiang ; Chen, Li-Song</creator><contributor>Pecoraro, Lorenzo</contributor><creatorcontrib>Liu, Peng-Hu ; Huang, Zai-Xing ; Luo, Xu-Hui ; Chen, Hua ; Weng, Bo-Qi ; Wang, Yi-Xiang ; Chen, Li-Song ; Pecoraro, Lorenzo</creatorcontrib><description>Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0239617</identifier><identifier>PMID: 32991614</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Agaricus ; Agaricus - drug effects ; Agaricus - genetics ; Agaricus - metabolism ; Agaricus brasiliensis ; Agriculture ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Bioaccumulation ; Biology and Life Sciences ; Cadmium ; Cadmium - metabolism ; Cadmium - toxicity ; Cell cycle ; Cell walls ; Cultivars ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; DNA Repair - drug effects ; DNA Replication - drug effects ; Drug Tolerance ; Ecology ; Efflux ; Engineering research ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genes ; Genetic aspects ; Glutathione ; Glutathione transferase ; Glutathione Transferase - genetics ; Glutathione Transferase - metabolism ; Laboratories ; Molecular biology ; Molecular modelling ; Mushrooms ; Mycelia ; Mycelium - chemistry ; Mycelium - drug effects ; Mycelium - growth & development ; Organic acids ; Physical Sciences ; Physiological aspects ; Physiology ; Plant hardiness ; Pollution tolerance ; Polysaccharides ; Polysaccharides - metabolism ; Proteins ; Repair ; Replication ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA, Fungal - chemistry ; RNA, Fungal - metabolism ; RNA-Seq ; Saccharides ; Software ; Stability ; Sulfur ; Transcriptome ; Trehalose ; Zinc</subject><ispartof>PloS one, 2020-09, Vol.15 (9), p.e0239617</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Liu et al 2020 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</citedby><cites>FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2447246188/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2447246188?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32991614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pecoraro, Lorenzo</contributor><creatorcontrib>Liu, Peng-Hu</creatorcontrib><creatorcontrib>Huang, Zai-Xing</creatorcontrib><creatorcontrib>Luo, Xu-Hui</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Weng, Bo-Qi</creatorcontrib><creatorcontrib>Wang, Yi-Xiang</creatorcontrib><creatorcontrib>Chen, Li-Song</creatorcontrib><title>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.</description><subject>Accumulation</subject><subject>Agaricus</subject><subject>Agaricus - drug effects</subject><subject>Agaricus - genetics</subject><subject>Agaricus - metabolism</subject><subject>Agaricus brasiliensis</subject><subject>Agriculture</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Bioaccumulation</subject><subject>Biology and Life Sciences</subject><subject>Cadmium</subject><subject>Cadmium - metabolism</subject><subject>Cadmium - toxicity</subject><subject>Cell cycle</subject><subject>Cell walls</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>DNA Replication - drug effects</subject><subject>Drug Tolerance</subject><subject>Ecology</subject><subject>Efflux</subject><subject>Engineering research</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glutathione</subject><subject>Glutathione transferase</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - metabolism</subject><subject>Laboratories</subject><subject>Molecular biology</subject><subject>Molecular modelling</subject><subject>Mushrooms</subject><subject>Mycelia</subject><subject>Mycelium - chemistry</subject><subject>Mycelium - drug effects</subject><subject>Mycelium - growth & development</subject><subject>Organic acids</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plant hardiness</subject><subject>Pollution tolerance</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><subject>Proteins</subject><subject>Repair</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA, Fungal - chemistry</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA-Seq</subject><subject>Saccharides</subject><subject>Software</subject><subject>Stability</subject><subject>Sulfur</subject><subject>Transcriptome</subject><subject>Trehalose</subject><subject>Zinc</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk2P0zAUjBCIXQr_AIElLnBoiePESS5IVcXHSitxgbP1Yj-3rmK72ElX-_f4ZTg0W20lUA6O582bN7Yny17TfEVZTT_u_Rgc9KuDd7jKC9ZyWj_JrmnLiiUvcvb00f9V9iLGfZ5XrOH8eXbFiralnJbX2e-NtwcIMJgjkiGAizKYw-AtEkjq99FEEvCI0EciwSmjYECyRYcT3qeNIoNPJWXNaAlIOdoxwca7JDDVekyqEolxZLjzBHrrE27HuAveW_J-vYVg5BhJFyCa3qBLMz-QmMwYF8mdGXZEepe2cTBuex51Vn6ZPdPJHr6a10X288vnH5tvy9vvX28269ulrFo2LDmlAF3bqUYzjrpkOdcadFF3smFdp1kusW14rRSjlZIaZallVbUlS_USFVtkb0-6h95HMV9_FEVZ1kXJadMkxs2JoTzsxSEYC-FeeDDiL-DDVkAYjOxRyLKGNJLmTEFZtdBVtSzavNGoinbysMg-zdPGzqKSON1AfyF6WXFmJ7b-KOoqZaFiSeDdLBD8rxHj8B_LM2sLyZVx2icxaU2UYs0ZT4yKT6zVP1jpU2hNehzUJuEXDeWpQQYfY0B9Nk5zMcX3wYyY4ivm-Ka2N48PfW56yCv7A8iL9To</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Liu, Peng-Hu</creator><creator>Huang, Zai-Xing</creator><creator>Luo, Xu-Hui</creator><creator>Chen, Hua</creator><creator>Weng, Bo-Qi</creator><creator>Wang, Yi-Xiang</creator><creator>Chen, Li-Song</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200929</creationdate><title>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</title><author>Liu, Peng-Hu ; Huang, Zai-Xing ; Luo, Xu-Hui ; Chen, Hua ; Weng, Bo-Qi ; Wang, Yi-Xiang ; Chen, Li-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Agaricus</topic><topic>Agaricus - drug effects</topic><topic>Agaricus - genetics</topic><topic>Agaricus - metabolism</topic><topic>Agaricus brasiliensis</topic><topic>Agriculture</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Bioaccumulation</topic><topic>Biology and Life Sciences</topic><topic>Cadmium</topic><topic>Cadmium - metabolism</topic><topic>Cadmium - toxicity</topic><topic>Cell cycle</topic><topic>Cell walls</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>DNA Replication - drug effects</topic><topic>Drug Tolerance</topic><topic>Ecology</topic><topic>Efflux</topic><topic>Engineering research</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glutathione</topic><topic>Glutathione transferase</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - metabolism</topic><topic>Laboratories</topic><topic>Molecular biology</topic><topic>Molecular modelling</topic><topic>Mushrooms</topic><topic>Mycelia</topic><topic>Mycelium - chemistry</topic><topic>Mycelium - drug effects</topic><topic>Mycelium - growth & development</topic><topic>Organic acids</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plant hardiness</topic><topic>Pollution tolerance</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><topic>Proteins</topic><topic>Repair</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA, Fungal - chemistry</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA-Seq</topic><topic>Saccharides</topic><topic>Software</topic><topic>Stability</topic><topic>Sulfur</topic><topic>Transcriptome</topic><topic>Trehalose</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peng-Hu</creatorcontrib><creatorcontrib>Huang, Zai-Xing</creatorcontrib><creatorcontrib>Luo, Xu-Hui</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Weng, Bo-Qi</creatorcontrib><creatorcontrib>Wang, Yi-Xiang</creatorcontrib><creatorcontrib>Chen, Li-Song</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peng-Hu</au><au>Huang, Zai-Xing</au><au>Luo, Xu-Hui</au><au>Chen, Hua</au><au>Weng, Bo-Qi</au><au>Wang, Yi-Xiang</au><au>Chen, Li-Song</au><au>Pecoraro, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-09-29</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>e0239617</spage><pages>e0239617-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32991614</pmid><doi>10.1371/journal.pone.0239617</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-09, Vol.15 (9), p.e0239617 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2447246188 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Accumulation Agaricus Agaricus - drug effects Agaricus - genetics Agaricus - metabolism Agaricus brasiliensis Agriculture ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism Bioaccumulation Biology and Life Sciences Cadmium Cadmium - metabolism Cadmium - toxicity Cell cycle Cell walls Cultivars Deoxyribonucleic acid DNA DNA biosynthesis DNA repair DNA Repair - drug effects DNA Replication - drug effects Drug Tolerance Ecology Efflux Engineering research Fungal Proteins - genetics Fungal Proteins - metabolism Gene expression Gene Expression Profiling Gene Expression Regulation, Fungal Genes Genetic aspects Glutathione Glutathione transferase Glutathione Transferase - genetics Glutathione Transferase - metabolism Laboratories Molecular biology Molecular modelling Mushrooms Mycelia Mycelium - chemistry Mycelium - drug effects Mycelium - growth & development Organic acids Physical Sciences Physiological aspects Physiology Plant hardiness Pollution tolerance Polysaccharides Polysaccharides - metabolism Proteins Repair Replication Ribonucleic acid RNA RNA sequencing RNA, Fungal - chemistry RNA, Fungal - metabolism RNA-Seq Saccharides Software Stability Sulfur Transcriptome Trehalose Zinc |
title | Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptome%20analysis%20reveals%20candidate%20genes%20related%20to%20cadmium%20accumulation%20and%20tolerance%20in%20two%20almond%20mushroom%20(Agaricus%20brasiliensis)%20strains%20with%20contrasting%20cadmium%20tolerance&rft.jtitle=PloS%20one&rft.au=Liu,%20Peng-Hu&rft.date=2020-09-29&rft.volume=15&rft.issue=9&rft.spage=e0239617&rft.pages=e0239617-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0239617&rft_dat=%3Cgale_plos_%3EA636883568%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c593t-611aab9bd8f36ef4306ffaf27bc83bbf30ce9867dd315dcfec4fc55943c834ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447246188&rft_id=info:pmid/32991614&rft_galeid=A636883568&rfr_iscdi=true |