Loading…

Growth inhibition of pathogenic microorganisms by Pseudomonas protegens EMM-1 and partial characterization of inhibitory substances

The bacterial strain, EMM-1, was isolated from the rhizosphere of red maize ("Rojo Criollo") and identified as Pseudomonas protegens EMM-1 based on phylogenetic analysis of 16S rDNA, rpoB, rpoD, and gyrB gene sequences. We uncovered genes involved in the production of antimicrobial compoun...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-10, Vol.15 (10), p.e0240545
Main Authors: Cesa-Luna, Catherine, Baez, Antonino, Aguayo-Acosta, Alberto, Llano-Villarreal, Roberto Carlos, Juárez-González, Víctor Rivelino, Gaytán, Paul, Bustillos-Cristales, María Del Rocío, Rivera-Urbalejo, América, Muñoz-Rojas, Jesús, Quintero-Hernández, Verónica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The bacterial strain, EMM-1, was isolated from the rhizosphere of red maize ("Rojo Criollo") and identified as Pseudomonas protegens EMM-1 based on phylogenetic analysis of 16S rDNA, rpoB, rpoD, and gyrB gene sequences. We uncovered genes involved in the production of antimicrobial compounds like 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin, and lectin-like bacteriocins. These antimicrobial compounds are also produced by other fluorescent pseudomonads alike P. protegens. Double-layer agar assay showed that P. protegens EMM-1 inhibited the growth of several multidrug-resistant (MDR) bacteria, especially clinical isolates of the genera Klebsiella and β-hemolytic Streptococcus. This strain also displayed inhibitory effects against diverse fungi, such as Aspergillus, Botrytis, and Fusarium. Besides, a crude extract of inhibitory substances secreted into agar was obtained after the cold-leaching process, and physicochemical characterization was performed. The partially purified inhibitory substances produced by P. protegens EMM-1 inhibited the growth of Streptococcus sp. and Microbacterium sp., but no inhibitory effect was noted for other bacterial or fungal strains. The molecular weight determined after ultrafiltration was between 3 and 10 kDa. The inhibitory activity was thermally stable up to 60°C (but completely lost at 100°C), and the inhibitory activity remained active in a wide pH range (from 3 to 9). After treatment with a protease from Bacillus licheniformis, the inhibitory activity was decreased by 90%, suggesting the presence of proteic natural compounds. All these findings suggested that P. protegens EMM-1 is a potential source of antimicrobials to be used against pathogens for humans and plants.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0240545