Loading…

Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index

Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation an...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-10, Vol.15 (10), p.e0240986-e0240986
Main Authors: Cheikhi, Amin M, Johnson, Zariel I, Julian, Dana R, Wheeler, Sarah, Feghali-Bostwick, Carol, Conley, Yvette P, Lyons-Weiler, James, Yates, Cecelia C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3
container_end_page e0240986
container_issue 10
container_start_page e0240986
container_title PloS one
container_volume 15
creator Cheikhi, Amin M
Johnson, Zariel I
Julian, Dana R
Wheeler, Sarah
Feghali-Bostwick, Carol
Conley, Yvette P
Lyons-Weiler, James
Yates, Cecelia C
description Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.
doi_str_mv 10.1371/journal.pone.0240986
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2453902551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639240727</galeid><doaj_id>oai_doaj_org_article_94b0260b044e467f930eab428d86029b</doaj_id><sourcerecordid>A639240727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3</originalsourceid><addsrcrecordid>eNqNk8tq3DAUhk1padK0b1BaQ6G0i5nKkixbm0IIvQwEUnrbClk69ijI1kSyw8yuj155xgnjkkXxwtLRd37p3JLkZYaWGSmyD9du8J20y43rYIkwRbxkj5LTjBO8YBiRx0frk-RZCNcI5aRk7GlyQgjieYnxafLnmwdtVG9cl7o6DXAL3vS7VHY6DUPV7zYw2mtTeRdM16TaBJAB0mG_a50Gm5qudr4FnVa7cW1l28q94qgC295LBdYOVvo0HnizTRvoIKIats-TJ7W0AV5M_7Pk1-dPPy--Li6vvqwuzi8XitGsXxCqYjA1wlxXSHKkOSpqpYExxjVCWudUY5ppViJCSl0ppkgucY5khYHlmpwlrw-6G-uCmJIXBKY54QjneRaJ1YHQTl6LjTet9DvhpBF7g_ONkL43yoLgtEKYoQpRCpQVNScIZEVxqUsWn1hFrY_TbUMVE6Ogi0mwM9H5SWfWonG3oshLinERBd5NAt7dDBB60ZowZlF24Ib9u2mWY8pIRN_8gz4c3UQ1MgYwVmwsyygqzhnhsX-K_bXLB6j4aWiNip1Wm2ifObyfOUSmjxVv5BCCWP34_v_s1e85-_aIXYO0_To4O4xtFeYgPYAqNmjwUN8nOUNiHJS7bIhxUMQ0KNHt1XGB7p3uJoP8BXE8DxM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453902551</pqid></control><display><type>article</type><title>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cheikhi, Amin M ; Johnson, Zariel I ; Julian, Dana R ; Wheeler, Sarah ; Feghali-Bostwick, Carol ; Conley, Yvette P ; Lyons-Weiler, James ; Yates, Cecelia C</creator><contributor>Wu, Minghua</contributor><creatorcontrib>Cheikhi, Amin M ; Johnson, Zariel I ; Julian, Dana R ; Wheeler, Sarah ; Feghali-Bostwick, Carol ; Conley, Yvette P ; Lyons-Weiler, James ; Yates, Cecelia C ; Wu, Minghua</creatorcontrib><description>Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0240986</identifier><identifier>PMID: 33095822</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Age Factors ; Algorithms ; Autoimmune diseases ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Biopsy ; Case-Control Studies ; Chemokines ; Datasets ; Disease ; Extracellular matrix ; Extracellular Matrix - genetics ; Fibrosis ; Fibrosis - genetics ; Gender ; Gene expression ; Gene Expression Profiling ; Genes ; Genetic aspects ; Health aspects ; Health promotion ; Humans ; Inflammation ; Inflammation - genetics ; Inflammation - metabolism ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Medicine ; Medicine and Health Sciences ; Modelling ; Models, Biological ; Nursing schools ; Pathology ; Patients ; Quantitative analysis ; Scleroderma ; Scleroderma, Systemic - genetics ; Skin - pathology ; Supervision ; Systemic sclerosis</subject><ispartof>PloS one, 2020-10, Vol.15 (10), p.e0240986-e0240986</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Cheikhi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Cheikhi et al 2020 Cheikhi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3</cites><orcidid>0000-0002-8240-7773 ; 0000-0001-9343-7508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2453902551/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2453902551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33095822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wu, Minghua</contributor><creatorcontrib>Cheikhi, Amin M</creatorcontrib><creatorcontrib>Johnson, Zariel I</creatorcontrib><creatorcontrib>Julian, Dana R</creatorcontrib><creatorcontrib>Wheeler, Sarah</creatorcontrib><creatorcontrib>Feghali-Bostwick, Carol</creatorcontrib><creatorcontrib>Conley, Yvette P</creatorcontrib><creatorcontrib>Lyons-Weiler, James</creatorcontrib><creatorcontrib>Yates, Cecelia C</creatorcontrib><title>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.</description><subject>Age</subject><subject>Age Factors</subject><subject>Algorithms</subject><subject>Autoimmune diseases</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Biopsy</subject><subject>Case-Control Studies</subject><subject>Chemokines</subject><subject>Datasets</subject><subject>Disease</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - genetics</subject><subject>Fibrosis</subject><subject>Fibrosis - genetics</subject><subject>Gender</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Health promotion</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammation - genetics</subject><subject>Inflammation - metabolism</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Nursing schools</subject><subject>Pathology</subject><subject>Patients</subject><subject>Quantitative analysis</subject><subject>Scleroderma</subject><subject>Scleroderma, Systemic - genetics</subject><subject>Skin - pathology</subject><subject>Supervision</subject><subject>Systemic sclerosis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tq3DAUhk1padK0b1BaQ6G0i5nKkixbm0IIvQwEUnrbClk69ijI1kSyw8yuj155xgnjkkXxwtLRd37p3JLkZYaWGSmyD9du8J20y43rYIkwRbxkj5LTjBO8YBiRx0frk-RZCNcI5aRk7GlyQgjieYnxafLnmwdtVG9cl7o6DXAL3vS7VHY6DUPV7zYw2mtTeRdM16TaBJAB0mG_a50Gm5qudr4FnVa7cW1l28q94qgC295LBdYOVvo0HnizTRvoIKIats-TJ7W0AV5M_7Pk1-dPPy--Li6vvqwuzi8XitGsXxCqYjA1wlxXSHKkOSpqpYExxjVCWudUY5ppViJCSl0ppkgucY5khYHlmpwlrw-6G-uCmJIXBKY54QjneRaJ1YHQTl6LjTet9DvhpBF7g_ONkL43yoLgtEKYoQpRCpQVNScIZEVxqUsWn1hFrY_TbUMVE6Ogi0mwM9H5SWfWonG3oshLinERBd5NAt7dDBB60ZowZlF24Ib9u2mWY8pIRN_8gz4c3UQ1MgYwVmwsyygqzhnhsX-K_bXLB6j4aWiNip1Wm2ifObyfOUSmjxVv5BCCWP34_v_s1e85-_aIXYO0_To4O4xtFeYgPYAqNmjwUN8nOUNiHJS7bIhxUMQ0KNHt1XGB7p3uJoP8BXE8DxM</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Cheikhi, Amin M</creator><creator>Johnson, Zariel I</creator><creator>Julian, Dana R</creator><creator>Wheeler, Sarah</creator><creator>Feghali-Bostwick, Carol</creator><creator>Conley, Yvette P</creator><creator>Lyons-Weiler, James</creator><creator>Yates, Cecelia C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8240-7773</orcidid><orcidid>https://orcid.org/0000-0001-9343-7508</orcidid></search><sort><creationdate>20201023</creationdate><title>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</title><author>Cheikhi, Amin M ; Johnson, Zariel I ; Julian, Dana R ; Wheeler, Sarah ; Feghali-Bostwick, Carol ; Conley, Yvette P ; Lyons-Weiler, James ; Yates, Cecelia C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Age Factors</topic><topic>Algorithms</topic><topic>Autoimmune diseases</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Biopsy</topic><topic>Case-Control Studies</topic><topic>Chemokines</topic><topic>Datasets</topic><topic>Disease</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - genetics</topic><topic>Fibrosis</topic><topic>Fibrosis - genetics</topic><topic>Gender</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Health promotion</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammation - genetics</topic><topic>Inflammation - metabolism</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Nursing schools</topic><topic>Pathology</topic><topic>Patients</topic><topic>Quantitative analysis</topic><topic>Scleroderma</topic><topic>Scleroderma, Systemic - genetics</topic><topic>Skin - pathology</topic><topic>Supervision</topic><topic>Systemic sclerosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheikhi, Amin M</creatorcontrib><creatorcontrib>Johnson, Zariel I</creatorcontrib><creatorcontrib>Julian, Dana R</creatorcontrib><creatorcontrib>Wheeler, Sarah</creatorcontrib><creatorcontrib>Feghali-Bostwick, Carol</creatorcontrib><creatorcontrib>Conley, Yvette P</creatorcontrib><creatorcontrib>Lyons-Weiler, James</creatorcontrib><creatorcontrib>Yates, Cecelia C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheikhi, Amin M</au><au>Johnson, Zariel I</au><au>Julian, Dana R</au><au>Wheeler, Sarah</au><au>Feghali-Bostwick, Carol</au><au>Conley, Yvette P</au><au>Lyons-Weiler, James</au><au>Yates, Cecelia C</au><au>Wu, Minghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-10-23</date><risdate>2020</risdate><volume>15</volume><issue>10</issue><spage>e0240986</spage><epage>e0240986</epage><pages>e0240986-e0240986</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33095822</pmid><doi>10.1371/journal.pone.0240986</doi><tpages>e0240986</tpages><orcidid>https://orcid.org/0000-0002-8240-7773</orcidid><orcidid>https://orcid.org/0000-0001-9343-7508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-10, Vol.15 (10), p.e0240986-e0240986
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2453902551
source Publicly Available Content Database; PubMed Central
subjects Age
Age Factors
Algorithms
Autoimmune diseases
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Biopsy
Case-Control Studies
Chemokines
Datasets
Disease
Extracellular matrix
Extracellular Matrix - genetics
Fibrosis
Fibrosis - genetics
Gender
Gene expression
Gene Expression Profiling
Genes
Genetic aspects
Health aspects
Health promotion
Humans
Inflammation
Inflammation - genetics
Inflammation - metabolism
Intercellular Signaling Peptides and Proteins - genetics
Intercellular Signaling Peptides and Proteins - metabolism
Medicine
Medicine and Health Sciences
Modelling
Models, Biological
Nursing schools
Pathology
Patients
Quantitative analysis
Scleroderma
Scleroderma, Systemic - genetics
Skin - pathology
Supervision
Systemic sclerosis
title Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20severity%20and%20subtype%20of%20fibrosing%20disease%20using%20model%20informed%20by%20inflammation%20and%20extracellular%20matrix%20gene%20index&rft.jtitle=PloS%20one&rft.au=Cheikhi,%20Amin%20M&rft.date=2020-10-23&rft.volume=15&rft.issue=10&rft.spage=e0240986&rft.epage=e0240986&rft.pages=e0240986-e0240986&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0240986&rft_dat=%3Cgale_plos_%3EA639240727%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c641t-34c932f029db0a90d907fcde6669d00dd54d241d680338dbc6c35a250ab2e65d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453902551&rft_id=info:pmid/33095822&rft_galeid=A639240727&rfr_iscdi=true