Loading…

Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information

We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a consta...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-11, Vol.15 (11), p.e0241138-e0241138
Main Authors: Lee, Geonhui, Choi, Woong, Jo, Hanjin, Park, Wookhyun, Kim, Jaehyo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3
cites cdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3
container_end_page e0241138
container_issue 11
container_start_page e0241138
container_title PloS one
container_volume 15
creator Lee, Geonhui
Choi, Woong
Jo, Hanjin
Park, Wookhyun
Kim, Jaehyo
description We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.
doi_str_mv 10.1371/journal.pone.0241138
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2459615806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641243318</galeid><doaj_id>oai_doaj_org_article_035e907826a94aad937473ca857ba646</doaj_id><sourcerecordid>A641243318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</originalsourceid><addsrcrecordid>eNqNk1uL1DAYhoso7rr6D0QDgujFjEnT9HAjDIuHgYUFT7fha5p2sqbNmKSD84_8mSYz3WUqeyG9aPP1ed8k3yFJnhO8JLQg727MaAfQy60Z5BKnGSG0fJCck4qmizzF9OHJ91nyxLkbjBkt8_xxckYpKVhF8HnyZxU89k45ZFrUG28sEmbw1mjkvAUvuz1qQ7C1IQoawdAgB53ycbHVMMiDUigrRg0WBY34qYYueO1kLwfv0OjieqfcGCStlE0dEDQY5WS07dFOaiOU3yOxgaGThz0aufUbpIawdw9emeFp8qgF7eSz6X2RfP_44dvl58XV9af15epqIQpW-gWlNclx2lQpEMjKitK0rkWItRmrKpK2OZVQigIzXNC0TbOszoAJRoEKAbKhF8nLo-9WG8enJDueBnlOWInzQKyPRGPghm-t6sHuuQHFDwFjOw7WK6Elx5TJChdlmkOVATQVLbKCCihZUUOeRa_3025j3ctGhIRZ0DPT-Z9BbXhndrzIWcEYDgZvJgNrfo3Sed4rJ6SOlTFjPHeOcUkKEtFX_6D3326iOggXiAWIJY2mfJVnJM1C75SBWt5DhaeRvQoNJFsV4jPB25kgNpn87TsYnePrr1_-n73-MWdfn7AbCdpvnNFjbBk3B7MjKKxxzsr2LskE8zhQt9ngcaD4NFBB9uK0QHei2wmifwENsh4H</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459615806</pqid></control><display><type>article</type><title>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Lee, Geonhui ; Choi, Woong ; Jo, Hanjin ; Park, Wookhyun ; Kim, Jaehyo</creator><contributor>Philip, Benjamin A.</contributor><creatorcontrib>Lee, Geonhui ; Choi, Woong ; Jo, Hanjin ; Park, Wookhyun ; Kim, Jaehyo ; Philip, Benjamin A.</creatorcontrib><description>We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0241138</identifier><identifier>PMID: 33175910</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Analysis ; Angular velocity ; Behavioral laterality ; Biology and Life Sciences ; Circular orbits ; Computer and Information Sciences ; Depth perception ; Engineering ; Engineering and Technology ; Experiments ; Feedback ; Feedback control ; Feedback, Sensory - physiology ; Female ; Frequency analysis ; Humans ; Male ; Measurement ; Motion Perception - physiology ; Motor task performance ; Periodicity ; Physical Sciences ; Physiological regulation ; Planes ; Polar coordinates ; Psychomotor performance ; Quadrants ; Research and Analysis Methods ; Rotation (Motion) ; Social Sciences ; Speed ; Statistical analysis ; Strategy ; Three dimensional motion ; Three dimensional vision ; Tracking ; Velocity ; Virtual Reality ; Visual perception ; Young Adult</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0241138-e0241138</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Lee et al 2020 Lee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</citedby><cites>FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</cites><orcidid>0000-0001-6823-7336 ; 0000-0002-0523-8304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2459615806/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2459615806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33175910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Philip, Benjamin A.</contributor><creatorcontrib>Lee, Geonhui</creatorcontrib><creatorcontrib>Choi, Woong</creatorcontrib><creatorcontrib>Jo, Hanjin</creatorcontrib><creatorcontrib>Park, Wookhyun</creatorcontrib><creatorcontrib>Kim, Jaehyo</creatorcontrib><title>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.</description><subject>Adult</subject><subject>Analysis</subject><subject>Angular velocity</subject><subject>Behavioral laterality</subject><subject>Biology and Life Sciences</subject><subject>Circular orbits</subject><subject>Computer and Information Sciences</subject><subject>Depth perception</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback, Sensory - physiology</subject><subject>Female</subject><subject>Frequency analysis</subject><subject>Humans</subject><subject>Male</subject><subject>Measurement</subject><subject>Motion Perception - physiology</subject><subject>Motor task performance</subject><subject>Periodicity</subject><subject>Physical Sciences</subject><subject>Physiological regulation</subject><subject>Planes</subject><subject>Polar coordinates</subject><subject>Psychomotor performance</subject><subject>Quadrants</subject><subject>Research and Analysis Methods</subject><subject>Rotation (Motion)</subject><subject>Social Sciences</subject><subject>Speed</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Three dimensional motion</subject><subject>Three dimensional vision</subject><subject>Tracking</subject><subject>Velocity</subject><subject>Virtual Reality</subject><subject>Visual perception</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAYhoso7rr6D0QDgujFjEnT9HAjDIuHgYUFT7fha5p2sqbNmKSD84_8mSYz3WUqeyG9aPP1ed8k3yFJnhO8JLQg727MaAfQy60Z5BKnGSG0fJCck4qmizzF9OHJ91nyxLkbjBkt8_xxckYpKVhF8HnyZxU89k45ZFrUG28sEmbw1mjkvAUvuz1qQ7C1IQoawdAgB53ycbHVMMiDUigrRg0WBY34qYYueO1kLwfv0OjieqfcGCStlE0dEDQY5WS07dFOaiOU3yOxgaGThz0aufUbpIawdw9emeFp8qgF7eSz6X2RfP_44dvl58XV9af15epqIQpW-gWlNclx2lQpEMjKitK0rkWItRmrKpK2OZVQigIzXNC0TbOszoAJRoEKAbKhF8nLo-9WG8enJDueBnlOWInzQKyPRGPghm-t6sHuuQHFDwFjOw7WK6Elx5TJChdlmkOVATQVLbKCCihZUUOeRa_3025j3ctGhIRZ0DPT-Z9BbXhndrzIWcEYDgZvJgNrfo3Sed4rJ6SOlTFjPHeOcUkKEtFX_6D3326iOggXiAWIJY2mfJVnJM1C75SBWt5DhaeRvQoNJFsV4jPB25kgNpn87TsYnePrr1_-n73-MWdfn7AbCdpvnNFjbBk3B7MjKKxxzsr2LskE8zhQt9ngcaD4NFBB9uK0QHei2wmifwENsh4H</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Lee, Geonhui</creator><creator>Choi, Woong</creator><creator>Jo, Hanjin</creator><creator>Park, Wookhyun</creator><creator>Kim, Jaehyo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6823-7336</orcidid><orcidid>https://orcid.org/0000-0002-0523-8304</orcidid></search><sort><creationdate>20201111</creationdate><title>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</title><author>Lee, Geonhui ; Choi, Woong ; Jo, Hanjin ; Park, Wookhyun ; Kim, Jaehyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Analysis</topic><topic>Angular velocity</topic><topic>Behavioral laterality</topic><topic>Biology and Life Sciences</topic><topic>Circular orbits</topic><topic>Computer and Information Sciences</topic><topic>Depth perception</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback, Sensory - physiology</topic><topic>Female</topic><topic>Frequency analysis</topic><topic>Humans</topic><topic>Male</topic><topic>Measurement</topic><topic>Motion Perception - physiology</topic><topic>Motor task performance</topic><topic>Periodicity</topic><topic>Physical Sciences</topic><topic>Physiological regulation</topic><topic>Planes</topic><topic>Polar coordinates</topic><topic>Psychomotor performance</topic><topic>Quadrants</topic><topic>Research and Analysis Methods</topic><topic>Rotation (Motion)</topic><topic>Social Sciences</topic><topic>Speed</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Three dimensional motion</topic><topic>Three dimensional vision</topic><topic>Tracking</topic><topic>Velocity</topic><topic>Virtual Reality</topic><topic>Visual perception</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Geonhui</creatorcontrib><creatorcontrib>Choi, Woong</creatorcontrib><creatorcontrib>Jo, Hanjin</creatorcontrib><creatorcontrib>Park, Wookhyun</creatorcontrib><creatorcontrib>Kim, Jaehyo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Geonhui</au><au>Choi, Woong</au><au>Jo, Hanjin</au><au>Park, Wookhyun</au><au>Kim, Jaehyo</au><au>Philip, Benjamin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0241138</spage><epage>e0241138</epage><pages>e0241138-e0241138</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33175910</pmid><doi>10.1371/journal.pone.0241138</doi><tpages>e0241138</tpages><orcidid>https://orcid.org/0000-0001-6823-7336</orcidid><orcidid>https://orcid.org/0000-0002-0523-8304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0241138-e0241138
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2459615806
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Adult
Analysis
Angular velocity
Behavioral laterality
Biology and Life Sciences
Circular orbits
Computer and Information Sciences
Depth perception
Engineering
Engineering and Technology
Experiments
Feedback
Feedback control
Feedback, Sensory - physiology
Female
Frequency analysis
Humans
Male
Measurement
Motion Perception - physiology
Motor task performance
Periodicity
Physical Sciences
Physiological regulation
Planes
Polar coordinates
Psychomotor performance
Quadrants
Research and Analysis Methods
Rotation (Motion)
Social Sciences
Speed
Statistical analysis
Strategy
Three dimensional motion
Three dimensional vision
Tracking
Velocity
Virtual Reality
Visual perception
Young Adult
title Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20motor%20control%20strategy%20for%20frontal%20and%20sagittal%20planes%20of%20circular%20tracking%20movements%20using%20visual%20feedback%20noise%20from%20velocity%20change%20and%20depth%20information&rft.jtitle=PloS%20one&rft.au=Lee,%20Geonhui&rft.date=2020-11-11&rft.volume=15&rft.issue=11&rft.spage=e0241138&rft.epage=e0241138&rft.pages=e0241138-e0241138&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0241138&rft_dat=%3Cgale_plos_%3EA641243318%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459615806&rft_id=info:pmid/33175910&rft_galeid=A641243318&rfr_iscdi=true