Loading…
Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information
We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a consta...
Saved in:
Published in: | PloS one 2020-11, Vol.15 (11), p.e0241138-e0241138 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3 |
container_end_page | e0241138 |
container_issue | 11 |
container_start_page | e0241138 |
container_title | PloS one |
container_volume | 15 |
creator | Lee, Geonhui Choi, Woong Jo, Hanjin Park, Wookhyun Kim, Jaehyo |
description | We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area. |
doi_str_mv | 10.1371/journal.pone.0241138 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2459615806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641243318</galeid><doaj_id>oai_doaj_org_article_035e907826a94aad937473ca857ba646</doaj_id><sourcerecordid>A641243318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</originalsourceid><addsrcrecordid>eNqNk1uL1DAYhoso7rr6D0QDgujFjEnT9HAjDIuHgYUFT7fha5p2sqbNmKSD84_8mSYz3WUqeyG9aPP1ed8k3yFJnhO8JLQg727MaAfQy60Z5BKnGSG0fJCck4qmizzF9OHJ91nyxLkbjBkt8_xxckYpKVhF8HnyZxU89k45ZFrUG28sEmbw1mjkvAUvuz1qQ7C1IQoawdAgB53ycbHVMMiDUigrRg0WBY34qYYueO1kLwfv0OjieqfcGCStlE0dEDQY5WS07dFOaiOU3yOxgaGThz0aufUbpIawdw9emeFp8qgF7eSz6X2RfP_44dvl58XV9af15epqIQpW-gWlNclx2lQpEMjKitK0rkWItRmrKpK2OZVQigIzXNC0TbOszoAJRoEKAbKhF8nLo-9WG8enJDueBnlOWInzQKyPRGPghm-t6sHuuQHFDwFjOw7WK6Elx5TJChdlmkOVATQVLbKCCihZUUOeRa_3025j3ctGhIRZ0DPT-Z9BbXhndrzIWcEYDgZvJgNrfo3Sed4rJ6SOlTFjPHeOcUkKEtFX_6D3326iOggXiAWIJY2mfJVnJM1C75SBWt5DhaeRvQoNJFsV4jPB25kgNpn87TsYnePrr1_-n73-MWdfn7AbCdpvnNFjbBk3B7MjKKxxzsr2LskE8zhQt9ngcaD4NFBB9uK0QHei2wmifwENsh4H</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459615806</pqid></control><display><type>article</type><title>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Lee, Geonhui ; Choi, Woong ; Jo, Hanjin ; Park, Wookhyun ; Kim, Jaehyo</creator><contributor>Philip, Benjamin A.</contributor><creatorcontrib>Lee, Geonhui ; Choi, Woong ; Jo, Hanjin ; Park, Wookhyun ; Kim, Jaehyo ; Philip, Benjamin A.</creatorcontrib><description>We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0241138</identifier><identifier>PMID: 33175910</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Analysis ; Angular velocity ; Behavioral laterality ; Biology and Life Sciences ; Circular orbits ; Computer and Information Sciences ; Depth perception ; Engineering ; Engineering and Technology ; Experiments ; Feedback ; Feedback control ; Feedback, Sensory - physiology ; Female ; Frequency analysis ; Humans ; Male ; Measurement ; Motion Perception - physiology ; Motor task performance ; Periodicity ; Physical Sciences ; Physiological regulation ; Planes ; Polar coordinates ; Psychomotor performance ; Quadrants ; Research and Analysis Methods ; Rotation (Motion) ; Social Sciences ; Speed ; Statistical analysis ; Strategy ; Three dimensional motion ; Three dimensional vision ; Tracking ; Velocity ; Virtual Reality ; Visual perception ; Young Adult</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0241138-e0241138</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Lee et al 2020 Lee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</citedby><cites>FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</cites><orcidid>0000-0001-6823-7336 ; 0000-0002-0523-8304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2459615806/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2459615806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33175910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Philip, Benjamin A.</contributor><creatorcontrib>Lee, Geonhui</creatorcontrib><creatorcontrib>Choi, Woong</creatorcontrib><creatorcontrib>Jo, Hanjin</creatorcontrib><creatorcontrib>Park, Wookhyun</creatorcontrib><creatorcontrib>Kim, Jaehyo</creatorcontrib><title>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.</description><subject>Adult</subject><subject>Analysis</subject><subject>Angular velocity</subject><subject>Behavioral laterality</subject><subject>Biology and Life Sciences</subject><subject>Circular orbits</subject><subject>Computer and Information Sciences</subject><subject>Depth perception</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback, Sensory - physiology</subject><subject>Female</subject><subject>Frequency analysis</subject><subject>Humans</subject><subject>Male</subject><subject>Measurement</subject><subject>Motion Perception - physiology</subject><subject>Motor task performance</subject><subject>Periodicity</subject><subject>Physical Sciences</subject><subject>Physiological regulation</subject><subject>Planes</subject><subject>Polar coordinates</subject><subject>Psychomotor performance</subject><subject>Quadrants</subject><subject>Research and Analysis Methods</subject><subject>Rotation (Motion)</subject><subject>Social Sciences</subject><subject>Speed</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Three dimensional motion</subject><subject>Three dimensional vision</subject><subject>Tracking</subject><subject>Velocity</subject><subject>Virtual Reality</subject><subject>Visual perception</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAYhoso7rr6D0QDgujFjEnT9HAjDIuHgYUFT7fha5p2sqbNmKSD84_8mSYz3WUqeyG9aPP1ed8k3yFJnhO8JLQg727MaAfQy60Z5BKnGSG0fJCck4qmizzF9OHJ91nyxLkbjBkt8_xxckYpKVhF8HnyZxU89k45ZFrUG28sEmbw1mjkvAUvuz1qQ7C1IQoawdAgB53ycbHVMMiDUigrRg0WBY34qYYueO1kLwfv0OjieqfcGCStlE0dEDQY5WS07dFOaiOU3yOxgaGThz0aufUbpIawdw9emeFp8qgF7eSz6X2RfP_44dvl58XV9af15epqIQpW-gWlNclx2lQpEMjKitK0rkWItRmrKpK2OZVQigIzXNC0TbOszoAJRoEKAbKhF8nLo-9WG8enJDueBnlOWInzQKyPRGPghm-t6sHuuQHFDwFjOw7WK6Elx5TJChdlmkOVATQVLbKCCihZUUOeRa_3025j3ctGhIRZ0DPT-Z9BbXhndrzIWcEYDgZvJgNrfo3Sed4rJ6SOlTFjPHeOcUkKEtFX_6D3326iOggXiAWIJY2mfJVnJM1C75SBWt5DhaeRvQoNJFsV4jPB25kgNpn87TsYnePrr1_-n73-MWdfn7AbCdpvnNFjbBk3B7MjKKxxzsr2LskE8zhQt9ngcaD4NFBB9uK0QHei2wmifwENsh4H</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Lee, Geonhui</creator><creator>Choi, Woong</creator><creator>Jo, Hanjin</creator><creator>Park, Wookhyun</creator><creator>Kim, Jaehyo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6823-7336</orcidid><orcidid>https://orcid.org/0000-0002-0523-8304</orcidid></search><sort><creationdate>20201111</creationdate><title>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</title><author>Lee, Geonhui ; Choi, Woong ; Jo, Hanjin ; Park, Wookhyun ; Kim, Jaehyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Analysis</topic><topic>Angular velocity</topic><topic>Behavioral laterality</topic><topic>Biology and Life Sciences</topic><topic>Circular orbits</topic><topic>Computer and Information Sciences</topic><topic>Depth perception</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback, Sensory - physiology</topic><topic>Female</topic><topic>Frequency analysis</topic><topic>Humans</topic><topic>Male</topic><topic>Measurement</topic><topic>Motion Perception - physiology</topic><topic>Motor task performance</topic><topic>Periodicity</topic><topic>Physical Sciences</topic><topic>Physiological regulation</topic><topic>Planes</topic><topic>Polar coordinates</topic><topic>Psychomotor performance</topic><topic>Quadrants</topic><topic>Research and Analysis Methods</topic><topic>Rotation (Motion)</topic><topic>Social Sciences</topic><topic>Speed</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Three dimensional motion</topic><topic>Three dimensional vision</topic><topic>Tracking</topic><topic>Velocity</topic><topic>Virtual Reality</topic><topic>Visual perception</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Geonhui</creatorcontrib><creatorcontrib>Choi, Woong</creatorcontrib><creatorcontrib>Jo, Hanjin</creatorcontrib><creatorcontrib>Park, Wookhyun</creatorcontrib><creatorcontrib>Kim, Jaehyo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical & Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Geonhui</au><au>Choi, Woong</au><au>Jo, Hanjin</au><au>Park, Wookhyun</au><au>Kim, Jaehyo</au><au>Philip, Benjamin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0241138</spage><epage>e0241138</epage><pages>e0241138-e0241138</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We aim to investigate a control strategy for the circular tracking movement in a three-dimensional (3D) space based on the accuracy of the visual information. After setting the circular orbits for the frontal and sagittal planes in the 3D virtual space, the subjects track a target moving at a constant velocity. The analysis is applied to two parameters of the polar coordinates, namely, ΔR (the difference in the distance from the center of a circular orbit) and Δω (the difference in the angular velocity). The movement in the sagittal plane provides different depth information depending on the position of the target in orbit, unlike the task of the frontal plane. Therefore, the circular orbit is divided into four quadrants for a statistical analysis of ΔR. In the sagittal plane, the error was two to three times larger in quadrants 1 and 4 than in quadrants 2 and 3 close to the subject. Here, Δω is estimated using a frequency analysis; the lower the accuracy of the visual information, the greater the periodicity. When comparing two different planes, the periodicity in the sagittal plane was approximately 1.7 to 2 times larger than that of the frontal plane. In addition, the average angular velocity of the target and tracer was within 0.6% during a single cycle. We found that if the amount of visual information is reduced, an optimal feedback control strategy can be used to reduce the positional error within a specific area.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33175910</pmid><doi>10.1371/journal.pone.0241138</doi><tpages>e0241138</tpages><orcidid>https://orcid.org/0000-0001-6823-7336</orcidid><orcidid>https://orcid.org/0000-0002-0523-8304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0241138-e0241138 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2459615806 |
source | Publicly Available Content Database; PubMed Central(OpenAccess) |
subjects | Adult Analysis Angular velocity Behavioral laterality Biology and Life Sciences Circular orbits Computer and Information Sciences Depth perception Engineering Engineering and Technology Experiments Feedback Feedback control Feedback, Sensory - physiology Female Frequency analysis Humans Male Measurement Motion Perception - physiology Motor task performance Periodicity Physical Sciences Physiological regulation Planes Polar coordinates Psychomotor performance Quadrants Research and Analysis Methods Rotation (Motion) Social Sciences Speed Statistical analysis Strategy Three dimensional motion Three dimensional vision Tracking Velocity Virtual Reality Visual perception Young Adult |
title | Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20motor%20control%20strategy%20for%20frontal%20and%20sagittal%20planes%20of%20circular%20tracking%20movements%20using%20visual%20feedback%20noise%20from%20velocity%20change%20and%20depth%20information&rft.jtitle=PloS%20one&rft.au=Lee,%20Geonhui&rft.date=2020-11-11&rft.volume=15&rft.issue=11&rft.spage=e0241138&rft.epage=e0241138&rft.pages=e0241138-e0241138&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0241138&rft_dat=%3Cgale_plos_%3EA641243318%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-33b1602d92a1a489332bbcb16f459912f63ea8c7050732f244b4a5c53a3ccaed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459615806&rft_id=info:pmid/33175910&rft_galeid=A641243318&rfr_iscdi=true |