Loading…

Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae

Tup1-Cyc8 (also known as Tup1-Ssn6) is a general transcriptional corepressor. D-Mannitol (mannitol) and D-sorbitol (sorbitol) are the major polyols in nature. Budding yeast Saccharomyces cerevisiae is unable to assimilate mannitol or sorbitol, but acquires the ability to assimilate mannitol due to a...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-11, Vol.15 (11), p.e0242054-e0242054
Main Authors: Tanaka, Hideki, Murata, Kousaku, Hashimoto, Wataru, Kawai, Shigeyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-d11b1e6c3035156ca5a48e74a17c7a2afe02b70dccb2d2bd69e347128feac9eb3
cites cdi_FETCH-LOGICAL-c692t-d11b1e6c3035156ca5a48e74a17c7a2afe02b70dccb2d2bd69e347128feac9eb3
container_end_page e0242054
container_issue 11
container_start_page e0242054
container_title PloS one
container_volume 15
creator Tanaka, Hideki
Murata, Kousaku
Hashimoto, Wataru
Kawai, Shigeyuki
description Tup1-Cyc8 (also known as Tup1-Ssn6) is a general transcriptional corepressor. D-Mannitol (mannitol) and D-sorbitol (sorbitol) are the major polyols in nature. Budding yeast Saccharomyces cerevisiae is unable to assimilate mannitol or sorbitol, but acquires the ability to assimilate mannitol due to a spontaneous mutation in TUP1 or CYC8. In this study, we found that spontaneous mutation of TUP1 or CYC8 also permitted assimilation of sorbitol. Some spontaneous nonsense mutations of CYC8 produced a truncated Cyc8 with a C-terminal polyglutamine. The effects were guanidine hydrochloride-sensitive and were dependent on Hsp104, but were complemented by introduction of CYC8, ruling out involvement of a prion. Assimilation of mannitol and sorbitol conferred by other mutations of TUP1 or CYC8 was guanidine hydrochloride-tolerant. It is physiologically reasonable that S. cerevisiae carries this mechanism to acquire the ability to assimilate major polyols in nature.
doi_str_mv 10.1371/journal.pone.0242054
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2459616180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641243303</galeid><doaj_id>oai_doaj_org_article_bbc070171f6e47a495b9b4be92d82323</doaj_id><sourcerecordid>A641243303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d11b1e6c3035156ca5a48e74a17c7a2afe02b70dccb2d2bd69e347128feac9eb3</originalsourceid><addsrcrecordid>eNqNk99qFDEUxgdRbK2-gWhAEL3YNX9mMjM3QlnUFgoFq96Gk8yZ3ZSZZE0y1X0Rn9dsuy1d6YXkIsnJ73xJvuQUxUtG50zU7MOln4KDYb72DueUl5xW5aPikLWCzySn4vG98UHxLMZLSivRSPm0OBCC1VXT1IfFn5O4ZrScdbhG16FLBLQdbNqQ5AnEaEc7QEIygnM2-YGA60j0QV9PjHc9hoAd0RsCJIXJmUx3ZLExDfll0ypHF7OEYbT5rGTth81ymBLkKRLryAUYs4Lgx43BSAwGvLLRAj4vnvQwRHyx64-K758_fVuczM7Ov5wujs9mRrY8zTrGNENpBBUVq6SBCsoG6xJYbWrg0CPluqadMZp3XHeyRVHWjDc9gmlRi6Pi9Y3uevBR7SyNipdVK5lkDc3E6Q3RebhU62BHCBvlwarrgA9LBSFZM6DS2tCaspr1EssayrbSrS41trxruOAia33c7TbpETuT7Q4w7Inurzi7Ukt_pWpZ1RVvs8C7nUDwPyeMSY02GhwGcOin7bklpU0lqyqjb_5BH77djlpCvoB1vc_7mq2oOpYl46XI1mZq_gCVW4ejzX8Ae5vjewnv9xIyk_B3WsIUozq9-Pr_7PmPffbtPXaFMKRV9PlDWe_iPljegCb4GAP2dyYzqrblc-uG2paP2pVPTnt1_4Hukm7rRfwFOm4XVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459616180</pqid></control><display><type>article</type><title>Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tanaka, Hideki ; Murata, Kousaku ; Hashimoto, Wataru ; Kawai, Shigeyuki</creator><contributor>Baruffini, Enrico</contributor><creatorcontrib>Tanaka, Hideki ; Murata, Kousaku ; Hashimoto, Wataru ; Kawai, Shigeyuki ; Baruffini, Enrico</creatorcontrib><description>Tup1-Cyc8 (also known as Tup1-Ssn6) is a general transcriptional corepressor. D-Mannitol (mannitol) and D-sorbitol (sorbitol) are the major polyols in nature. Budding yeast Saccharomyces cerevisiae is unable to assimilate mannitol or sorbitol, but acquires the ability to assimilate mannitol due to a spontaneous mutation in TUP1 or CYC8. In this study, we found that spontaneous mutation of TUP1 or CYC8 also permitted assimilation of sorbitol. Some spontaneous nonsense mutations of CYC8 produced a truncated Cyc8 with a C-terminal polyglutamine. The effects were guanidine hydrochloride-sensitive and were dependent on Hsp104, but were complemented by introduction of CYC8, ruling out involvement of a prion. Assimilation of mannitol and sorbitol conferred by other mutations of TUP1 or CYC8 was guanidine hydrochloride-tolerant. It is physiologically reasonable that S. cerevisiae carries this mechanism to acquire the ability to assimilate major polyols in nature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242054</identifier><identifier>PMID: 33175887</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Analysis ; Assimilation ; Binding sites ; Biology and Life Sciences ; Biotechnology ; Carbon ; Codon, Nonsense ; D-Sorbitol ; Dehydrogenases ; Deoxyribonucleic acid ; DNA ; Food science ; Gene Expression Regulation, Fungal ; Genotype &amp; phenotype ; Glucose ; Glutamine ; Glycerol ; Guanidine hydrochloride ; Heat-Shock Proteins - metabolism ; Influence ; Laboratories ; Mannitol ; Mannitol - metabolism ; Mutation ; Nuclear Proteins - genetics ; Peptides - metabolism ; Physical Sciences ; Physiological aspects ; Plasmids ; Polyglutamine ; Polyols ; Promoter Regions, Genetic ; Protein Domains ; Proteins ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Research and Analysis Methods ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sorbitol ; Sorbitol - metabolism ; Transcription ; Trinucleotide repeat diseases ; Yeast ; Yeasts</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242054-e0242054</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Tanaka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Tanaka et al 2020 Tanaka et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d11b1e6c3035156ca5a48e74a17c7a2afe02b70dccb2d2bd69e347128feac9eb3</citedby><cites>FETCH-LOGICAL-c692t-d11b1e6c3035156ca5a48e74a17c7a2afe02b70dccb2d2bd69e347128feac9eb3</cites><orcidid>0000-0002-3640-9540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2459616180/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2459616180?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33175887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Baruffini, Enrico</contributor><creatorcontrib>Tanaka, Hideki</creatorcontrib><creatorcontrib>Murata, Kousaku</creatorcontrib><creatorcontrib>Hashimoto, Wataru</creatorcontrib><creatorcontrib>Kawai, Shigeyuki</creatorcontrib><title>Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Tup1-Cyc8 (also known as Tup1-Ssn6) is a general transcriptional corepressor. D-Mannitol (mannitol) and D-sorbitol (sorbitol) are the major polyols in nature. Budding yeast Saccharomyces cerevisiae is unable to assimilate mannitol or sorbitol, but acquires the ability to assimilate mannitol due to a spontaneous mutation in TUP1 or CYC8. In this study, we found that spontaneous mutation of TUP1 or CYC8 also permitted assimilation of sorbitol. Some spontaneous nonsense mutations of CYC8 produced a truncated Cyc8 with a C-terminal polyglutamine. The effects were guanidine hydrochloride-sensitive and were dependent on Hsp104, but were complemented by introduction of CYC8, ruling out involvement of a prion. Assimilation of mannitol and sorbitol conferred by other mutations of TUP1 or CYC8 was guanidine hydrochloride-tolerant. It is physiologically reasonable that S. cerevisiae carries this mechanism to acquire the ability to assimilate major polyols in nature.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Assimilation</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Codon, Nonsense</subject><subject>D-Sorbitol</subject><subject>Dehydrogenases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Food science</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genotype &amp; phenotype</subject><subject>Glucose</subject><subject>Glutamine</subject><subject>Glycerol</subject><subject>Guanidine hydrochloride</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Influence</subject><subject>Laboratories</subject><subject>Mannitol</subject><subject>Mannitol - metabolism</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Peptides - metabolism</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Polyglutamine</subject><subject>Polyols</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sorbitol</subject><subject>Sorbitol - metabolism</subject><subject>Transcription</subject><subject>Trinucleotide repeat diseases</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99qFDEUxgdRbK2-gWhAEL3YNX9mMjM3QlnUFgoFq96Gk8yZ3ZSZZE0y1X0Rn9dsuy1d6YXkIsnJ73xJvuQUxUtG50zU7MOln4KDYb72DueUl5xW5aPikLWCzySn4vG98UHxLMZLSivRSPm0OBCC1VXT1IfFn5O4ZrScdbhG16FLBLQdbNqQ5AnEaEc7QEIygnM2-YGA60j0QV9PjHc9hoAd0RsCJIXJmUx3ZLExDfll0ypHF7OEYbT5rGTth81ymBLkKRLryAUYs4Lgx43BSAwGvLLRAj4vnvQwRHyx64-K758_fVuczM7Ov5wujs9mRrY8zTrGNENpBBUVq6SBCsoG6xJYbWrg0CPluqadMZp3XHeyRVHWjDc9gmlRi6Pi9Y3uevBR7SyNipdVK5lkDc3E6Q3RebhU62BHCBvlwarrgA9LBSFZM6DS2tCaspr1EssayrbSrS41trxruOAia33c7TbpETuT7Q4w7Inurzi7Ukt_pWpZ1RVvs8C7nUDwPyeMSY02GhwGcOin7bklpU0lqyqjb_5BH77djlpCvoB1vc_7mq2oOpYl46XI1mZq_gCVW4ejzX8Ae5vjewnv9xIyk_B3WsIUozq9-Pr_7PmPffbtPXaFMKRV9PlDWe_iPljegCb4GAP2dyYzqrblc-uG2paP2pVPTnt1_4Hukm7rRfwFOm4XVQ</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Tanaka, Hideki</creator><creator>Murata, Kousaku</creator><creator>Hashimoto, Wataru</creator><creator>Kawai, Shigeyuki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3640-9540</orcidid></search><sort><creationdate>20201111</creationdate><title>Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae</title><author>Tanaka, Hideki ; Murata, Kousaku ; Hashimoto, Wataru ; Kawai, Shigeyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d11b1e6c3035156ca5a48e74a17c7a2afe02b70dccb2d2bd69e347128feac9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Assimilation</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Codon, Nonsense</topic><topic>D-Sorbitol</topic><topic>Dehydrogenases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Food science</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genotype &amp; phenotype</topic><topic>Glucose</topic><topic>Glutamine</topic><topic>Glycerol</topic><topic>Guanidine hydrochloride</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Influence</topic><topic>Laboratories</topic><topic>Mannitol</topic><topic>Mannitol - metabolism</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Peptides - metabolism</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Polyglutamine</topic><topic>Polyols</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sorbitol</topic><topic>Sorbitol - metabolism</topic><topic>Transcription</topic><topic>Trinucleotide repeat diseases</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Hideki</creatorcontrib><creatorcontrib>Murata, Kousaku</creatorcontrib><creatorcontrib>Hashimoto, Wataru</creatorcontrib><creatorcontrib>Kawai, Shigeyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Hideki</au><au>Murata, Kousaku</au><au>Hashimoto, Wataru</au><au>Kawai, Shigeyuki</au><au>Baruffini, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242054</spage><epage>e0242054</epage><pages>e0242054-e0242054</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tup1-Cyc8 (also known as Tup1-Ssn6) is a general transcriptional corepressor. D-Mannitol (mannitol) and D-sorbitol (sorbitol) are the major polyols in nature. Budding yeast Saccharomyces cerevisiae is unable to assimilate mannitol or sorbitol, but acquires the ability to assimilate mannitol due to a spontaneous mutation in TUP1 or CYC8. In this study, we found that spontaneous mutation of TUP1 or CYC8 also permitted assimilation of sorbitol. Some spontaneous nonsense mutations of CYC8 produced a truncated Cyc8 with a C-terminal polyglutamine. The effects were guanidine hydrochloride-sensitive and were dependent on Hsp104, but were complemented by introduction of CYC8, ruling out involvement of a prion. Assimilation of mannitol and sorbitol conferred by other mutations of TUP1 or CYC8 was guanidine hydrochloride-tolerant. It is physiologically reasonable that S. cerevisiae carries this mechanism to acquire the ability to assimilate major polyols in nature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33175887</pmid><doi>10.1371/journal.pone.0242054</doi><tpages>e0242054</tpages><orcidid>https://orcid.org/0000-0002-3640-9540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0242054-e0242054
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2459616180
source Publicly Available Content Database; PubMed Central
subjects Amino acids
Analysis
Assimilation
Binding sites
Biology and Life Sciences
Biotechnology
Carbon
Codon, Nonsense
D-Sorbitol
Dehydrogenases
Deoxyribonucleic acid
DNA
Food science
Gene Expression Regulation, Fungal
Genotype & phenotype
Glucose
Glutamine
Glycerol
Guanidine hydrochloride
Heat-Shock Proteins - metabolism
Influence
Laboratories
Mannitol
Mannitol - metabolism
Mutation
Nuclear Proteins - genetics
Peptides - metabolism
Physical Sciences
Physiological aspects
Plasmids
Polyglutamine
Polyols
Promoter Regions, Genetic
Protein Domains
Proteins
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Research and Analysis Methods
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sorbitol
Sorbitol - metabolism
Transcription
Trinucleotide repeat diseases
Yeast
Yeasts
title Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hsp104-dependent%20ability%20to%20assimilate%20mannitol%20and%20sorbitol%20conferred%20by%20a%20truncated%20Cyc8%20with%20a%20C-terminal%20polyglutamine%20in%20Saccharomyces%20cerevisiae&rft.jtitle=PloS%20one&rft.au=Tanaka,%20Hideki&rft.date=2020-11-11&rft.volume=15&rft.issue=11&rft.spage=e0242054&rft.epage=e0242054&rft.pages=e0242054-e0242054&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242054&rft_dat=%3Cgale_plos_%3EA641243303%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-d11b1e6c3035156ca5a48e74a17c7a2afe02b70dccb2d2bd69e347128feac9eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459616180&rft_id=info:pmid/33175887&rft_galeid=A641243303&rfr_iscdi=true