Loading…

Estimating effective population size changes from preferentially sampled genetic sequences

Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2020-10, Vol.16 (10), p.e1007774-e1007774
Main Authors: Karcher, Michael D, Carvalho, Luiz Max, Suchard, Marc A, Dudas, Gytis, Minin, Vladimir N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843
cites cdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843
container_end_page e1007774
container_issue 10
container_start_page e1007774
container_title PLoS computational biology
container_volume 16
creator Karcher, Michael D
Carvalho, Luiz Max
Suchard, Marc A
Dudas, Gytis
Minin, Vladimir N
description Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.
doi_str_mv 10.1371/journal.pcbi.1007774
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460773076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645337133</galeid><doaj_id>oai_doaj_org_article_a12e8166102741dfb75db7e805a95615</doaj_id><sourcerecordid>A645337133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</originalsourceid><addsrcrecordid>eNqVUk1v1DAUjBCIlsI_QBCJCxx2seOv5IJUVQVWqkDi48LFcpyX1CvHTuOkovx63rJp1UVcUA62n-eN500my55TsqZM0bfbOI_B-PVga7emhCil-IPsmArBVoqJ8uG9_VH2JKUtIbit5OPsiDHCeSXEcfbjPE2uN5MLXQ5tC3Zy15APcZg9FmPIk_sFub00oYOUt2Ps82GEFkYIkzPe3-TJ9IOHJu8gwORsnuBqhmAhPc0etcYneLasJ9n39-ffzj6uLj5_2JydXqysZGxamZo3VVO3XHJWKCjKwjaWg0CxWK2oNU1DlC1LUIyURkleS5yWKoJnKDk7yV7ueQcfk15sSbrgEj1hRElEbPaIJpqtHkYceLzR0Tj9pxDHTpsRtXvQhhZQUikpKRSnTVsrVKGgJMJUQlKBXO-W1-a6h8aiD6PxB6SHN8Fd6i5eayVKUpUlErxeCMaITqVJ9y5Z8N4EiPNOtyBS4A-tEPrqL-i_p1vvUZ3BAVxoI75r8WugdzYGaB3WTyUXDHPDGDa8OWhAzAQ_p87MKenN1y__gf10iOV7rB1jSpiSO1co0bvM3srXu8zqJbPY9uK-o3dNtyFlvwH1yujM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460773076</pqid></control><display><type>article</type><title>Estimating effective population size changes from preferentially sampled genetic sequences</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Karcher, Michael D ; Carvalho, Luiz Max ; Suchard, Marc A ; Dudas, Gytis ; Minin, Vladimir N</creator><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Karcher, Michael D ; Carvalho, Luiz Max ; Suchard, Marc A ; Dudas, Gytis ; Minin, Vladimir N ; Kosakovsky Pond, Sergei L.</creatorcontrib><description>Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007774</identifier><identifier>PMID: 33044955</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Computational Biology ; Computer and Information Sciences ; Ebolavirus - genetics ; Epidemics ; Geffen, David ; Gene sequencing ; Genealogy ; Genetics, Population - methods ; Genome, Viral - genetics ; Growth models ; Hemorrhagic Fever, Ebola - epidemiology ; Hemorrhagic Fever, Ebola - virology ; Humans ; Infectious diseases ; Influenza ; Influenza, Human - epidemiology ; Influenza, Human - virology ; Information sources ; Linear functions ; Markov analysis ; Mathematical models ; Medicine and Health Sciences ; Methods ; Models, Statistical ; Nucleotide sequence ; Orthomyxoviridae - genetics ; Population ; Population (statistical) ; Population biology ; Population Density ; Population Dynamics ; Population forecasting ; Population number ; Public health ; Random variables ; Research and Analysis Methods ; Sampling ; Software ; Statistical analysis ; Statistical models ; Statistical sampling ; Statistics ; Viral diseases ; Viruses</subject><ispartof>PLoS computational biology, 2020-10, Vol.16 (10), p.e1007774-e1007774</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Karcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Karcher et al 2020 Karcher et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</citedby><cites>FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</cites><orcidid>0000-0002-0227-4158 ; 0000-0002-1917-9288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2460773076/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2460773076?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33044955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Karcher, Michael D</creatorcontrib><creatorcontrib>Carvalho, Luiz Max</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Dudas, Gytis</creatorcontrib><creatorcontrib>Minin, Vladimir N</creatorcontrib><title>Estimating effective population size changes from preferentially sampled genetic sequences</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Ebolavirus - genetics</subject><subject>Epidemics</subject><subject>Geffen, David</subject><subject>Gene sequencing</subject><subject>Genealogy</subject><subject>Genetics, Population - methods</subject><subject>Genome, Viral - genetics</subject><subject>Growth models</subject><subject>Hemorrhagic Fever, Ebola - epidemiology</subject><subject>Hemorrhagic Fever, Ebola - virology</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - virology</subject><subject>Information sources</subject><subject>Linear functions</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Nucleotide sequence</subject><subject>Orthomyxoviridae - genetics</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Population biology</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Population forecasting</subject><subject>Population number</subject><subject>Public health</subject><subject>Random variables</subject><subject>Research and Analysis Methods</subject><subject>Sampling</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical sampling</subject><subject>Statistics</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1v1DAUjBCIlsI_QBCJCxx2seOv5IJUVQVWqkDi48LFcpyX1CvHTuOkovx63rJp1UVcUA62n-eN500my55TsqZM0bfbOI_B-PVga7emhCil-IPsmArBVoqJ8uG9_VH2JKUtIbit5OPsiDHCeSXEcfbjPE2uN5MLXQ5tC3Zy15APcZg9FmPIk_sFub00oYOUt2Ps82GEFkYIkzPe3-TJ9IOHJu8gwORsnuBqhmAhPc0etcYneLasJ9n39-ffzj6uLj5_2JydXqysZGxamZo3VVO3XHJWKCjKwjaWg0CxWK2oNU1DlC1LUIyURkleS5yWKoJnKDk7yV7ueQcfk15sSbrgEj1hRElEbPaIJpqtHkYceLzR0Tj9pxDHTpsRtXvQhhZQUikpKRSnTVsrVKGgJMJUQlKBXO-W1-a6h8aiD6PxB6SHN8Fd6i5eayVKUpUlErxeCMaITqVJ9y5Z8N4EiPNOtyBS4A-tEPrqL-i_p1vvUZ3BAVxoI75r8WugdzYGaB3WTyUXDHPDGDa8OWhAzAQ_p87MKenN1y__gf10iOV7rB1jSpiSO1co0bvM3srXu8zqJbPY9uK-o3dNtyFlvwH1yujM</recordid><startdate>20201012</startdate><enddate>20201012</enddate><creator>Karcher, Michael D</creator><creator>Carvalho, Luiz Max</creator><creator>Suchard, Marc A</creator><creator>Dudas, Gytis</creator><creator>Minin, Vladimir N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0227-4158</orcidid><orcidid>https://orcid.org/0000-0002-1917-9288</orcidid></search><sort><creationdate>20201012</creationdate><title>Estimating effective population size changes from preferentially sampled genetic sequences</title><author>Karcher, Michael D ; Carvalho, Luiz Max ; Suchard, Marc A ; Dudas, Gytis ; Minin, Vladimir N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Ebolavirus - genetics</topic><topic>Epidemics</topic><topic>Geffen, David</topic><topic>Gene sequencing</topic><topic>Genealogy</topic><topic>Genetics, Population - methods</topic><topic>Genome, Viral - genetics</topic><topic>Growth models</topic><topic>Hemorrhagic Fever, Ebola - epidemiology</topic><topic>Hemorrhagic Fever, Ebola - virology</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - virology</topic><topic>Information sources</topic><topic>Linear functions</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Nucleotide sequence</topic><topic>Orthomyxoviridae - genetics</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Population biology</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Population forecasting</topic><topic>Population number</topic><topic>Public health</topic><topic>Random variables</topic><topic>Research and Analysis Methods</topic><topic>Sampling</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical sampling</topic><topic>Statistics</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karcher, Michael D</creatorcontrib><creatorcontrib>Carvalho, Luiz Max</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Dudas, Gytis</creatorcontrib><creatorcontrib>Minin, Vladimir N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karcher, Michael D</au><au>Carvalho, Luiz Max</au><au>Suchard, Marc A</au><au>Dudas, Gytis</au><au>Minin, Vladimir N</au><au>Kosakovsky Pond, Sergei L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating effective population size changes from preferentially sampled genetic sequences</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-10-12</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1007774</spage><epage>e1007774</epage><pages>e1007774-e1007774</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33044955</pmid><doi>10.1371/journal.pcbi.1007774</doi><orcidid>https://orcid.org/0000-0002-0227-4158</orcidid><orcidid>https://orcid.org/0000-0002-1917-9288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-10, Vol.16 (10), p.e1007774-e1007774
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2460773076
source Publicly Available Content (ProQuest); PubMed Central
subjects Analysis
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Computational Biology
Computer and Information Sciences
Ebolavirus - genetics
Epidemics
Geffen, David
Gene sequencing
Genealogy
Genetics, Population - methods
Genome, Viral - genetics
Growth models
Hemorrhagic Fever, Ebola - epidemiology
Hemorrhagic Fever, Ebola - virology
Humans
Infectious diseases
Influenza
Influenza, Human - epidemiology
Influenza, Human - virology
Information sources
Linear functions
Markov analysis
Mathematical models
Medicine and Health Sciences
Methods
Models, Statistical
Nucleotide sequence
Orthomyxoviridae - genetics
Population
Population (statistical)
Population biology
Population Density
Population Dynamics
Population forecasting
Population number
Public health
Random variables
Research and Analysis Methods
Sampling
Software
Statistical analysis
Statistical models
Statistical sampling
Statistics
Viral diseases
Viruses
title Estimating effective population size changes from preferentially sampled genetic sequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20effective%20population%20size%20changes%20from%20preferentially%20sampled%20genetic%20sequences&rft.jtitle=PLoS%20computational%20biology&rft.au=Karcher,%20Michael%20D&rft.date=2020-10-12&rft.volume=16&rft.issue=10&rft.spage=e1007774&rft.epage=e1007774&rft.pages=e1007774-e1007774&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007774&rft_dat=%3Cgale_plos_%3EA645337133%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460773076&rft_id=info:pmid/33044955&rft_galeid=A645337133&rfr_iscdi=true