Loading…
Estimating effective population size changes from preferentially sampled genetic sequences
Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the...
Saved in:
Published in: | PLoS computational biology 2020-10, Vol.16 (10), p.e1007774-e1007774 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843 |
container_end_page | e1007774 |
container_issue | 10 |
container_start_page | e1007774 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Karcher, Michael D Carvalho, Luiz Max Suchard, Marc A Dudas, Gytis Minin, Vladimir N |
description | Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa. |
doi_str_mv | 10.1371/journal.pcbi.1007774 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2460773076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645337133</galeid><doaj_id>oai_doaj_org_article_a12e8166102741dfb75db7e805a95615</doaj_id><sourcerecordid>A645337133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</originalsourceid><addsrcrecordid>eNqVUk1v1DAUjBCIlsI_QBCJCxx2seOv5IJUVQVWqkDi48LFcpyX1CvHTuOkovx63rJp1UVcUA62n-eN500my55TsqZM0bfbOI_B-PVga7emhCil-IPsmArBVoqJ8uG9_VH2JKUtIbit5OPsiDHCeSXEcfbjPE2uN5MLXQ5tC3Zy15APcZg9FmPIk_sFub00oYOUt2Ps82GEFkYIkzPe3-TJ9IOHJu8gwORsnuBqhmAhPc0etcYneLasJ9n39-ffzj6uLj5_2JydXqysZGxamZo3VVO3XHJWKCjKwjaWg0CxWK2oNU1DlC1LUIyURkleS5yWKoJnKDk7yV7ueQcfk15sSbrgEj1hRElEbPaIJpqtHkYceLzR0Tj9pxDHTpsRtXvQhhZQUikpKRSnTVsrVKGgJMJUQlKBXO-W1-a6h8aiD6PxB6SHN8Fd6i5eayVKUpUlErxeCMaITqVJ9y5Z8N4EiPNOtyBS4A-tEPrqL-i_p1vvUZ3BAVxoI75r8WugdzYGaB3WTyUXDHPDGDa8OWhAzAQ_p87MKenN1y__gf10iOV7rB1jSpiSO1co0bvM3srXu8zqJbPY9uK-o3dNtyFlvwH1yujM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460773076</pqid></control><display><type>article</type><title>Estimating effective population size changes from preferentially sampled genetic sequences</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Karcher, Michael D ; Carvalho, Luiz Max ; Suchard, Marc A ; Dudas, Gytis ; Minin, Vladimir N</creator><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Karcher, Michael D ; Carvalho, Luiz Max ; Suchard, Marc A ; Dudas, Gytis ; Minin, Vladimir N ; Kosakovsky Pond, Sergei L.</creatorcontrib><description>Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007774</identifier><identifier>PMID: 33044955</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Computational Biology ; Computer and Information Sciences ; Ebolavirus - genetics ; Epidemics ; Geffen, David ; Gene sequencing ; Genealogy ; Genetics, Population - methods ; Genome, Viral - genetics ; Growth models ; Hemorrhagic Fever, Ebola - epidemiology ; Hemorrhagic Fever, Ebola - virology ; Humans ; Infectious diseases ; Influenza ; Influenza, Human - epidemiology ; Influenza, Human - virology ; Information sources ; Linear functions ; Markov analysis ; Mathematical models ; Medicine and Health Sciences ; Methods ; Models, Statistical ; Nucleotide sequence ; Orthomyxoviridae - genetics ; Population ; Population (statistical) ; Population biology ; Population Density ; Population Dynamics ; Population forecasting ; Population number ; Public health ; Random variables ; Research and Analysis Methods ; Sampling ; Software ; Statistical analysis ; Statistical models ; Statistical sampling ; Statistics ; Viral diseases ; Viruses</subject><ispartof>PLoS computational biology, 2020-10, Vol.16 (10), p.e1007774-e1007774</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Karcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Karcher et al 2020 Karcher et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</citedby><cites>FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</cites><orcidid>0000-0002-0227-4158 ; 0000-0002-1917-9288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2460773076/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2460773076?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33044955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Karcher, Michael D</creatorcontrib><creatorcontrib>Carvalho, Luiz Max</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Dudas, Gytis</creatorcontrib><creatorcontrib>Minin, Vladimir N</creatorcontrib><title>Estimating effective population size changes from preferentially sampled genetic sequences</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Ebolavirus - genetics</subject><subject>Epidemics</subject><subject>Geffen, David</subject><subject>Gene sequencing</subject><subject>Genealogy</subject><subject>Genetics, Population - methods</subject><subject>Genome, Viral - genetics</subject><subject>Growth models</subject><subject>Hemorrhagic Fever, Ebola - epidemiology</subject><subject>Hemorrhagic Fever, Ebola - virology</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - virology</subject><subject>Information sources</subject><subject>Linear functions</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Nucleotide sequence</subject><subject>Orthomyxoviridae - genetics</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Population biology</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Population forecasting</subject><subject>Population number</subject><subject>Public health</subject><subject>Random variables</subject><subject>Research and Analysis Methods</subject><subject>Sampling</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical sampling</subject><subject>Statistics</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1v1DAUjBCIlsI_QBCJCxx2seOv5IJUVQVWqkDi48LFcpyX1CvHTuOkovx63rJp1UVcUA62n-eN500my55TsqZM0bfbOI_B-PVga7emhCil-IPsmArBVoqJ8uG9_VH2JKUtIbit5OPsiDHCeSXEcfbjPE2uN5MLXQ5tC3Zy15APcZg9FmPIk_sFub00oYOUt2Ps82GEFkYIkzPe3-TJ9IOHJu8gwORsnuBqhmAhPc0etcYneLasJ9n39-ffzj6uLj5_2JydXqysZGxamZo3VVO3XHJWKCjKwjaWg0CxWK2oNU1DlC1LUIyURkleS5yWKoJnKDk7yV7ueQcfk15sSbrgEj1hRElEbPaIJpqtHkYceLzR0Tj9pxDHTpsRtXvQhhZQUikpKRSnTVsrVKGgJMJUQlKBXO-W1-a6h8aiD6PxB6SHN8Fd6i5eayVKUpUlErxeCMaITqVJ9y5Z8N4EiPNOtyBS4A-tEPrqL-i_p1vvUZ3BAVxoI75r8WugdzYGaB3WTyUXDHPDGDa8OWhAzAQ_p87MKenN1y__gf10iOV7rB1jSpiSO1co0bvM3srXu8zqJbPY9uK-o3dNtyFlvwH1yujM</recordid><startdate>20201012</startdate><enddate>20201012</enddate><creator>Karcher, Michael D</creator><creator>Carvalho, Luiz Max</creator><creator>Suchard, Marc A</creator><creator>Dudas, Gytis</creator><creator>Minin, Vladimir N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0227-4158</orcidid><orcidid>https://orcid.org/0000-0002-1917-9288</orcidid></search><sort><creationdate>20201012</creationdate><title>Estimating effective population size changes from preferentially sampled genetic sequences</title><author>Karcher, Michael D ; Carvalho, Luiz Max ; Suchard, Marc A ; Dudas, Gytis ; Minin, Vladimir N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Ebolavirus - genetics</topic><topic>Epidemics</topic><topic>Geffen, David</topic><topic>Gene sequencing</topic><topic>Genealogy</topic><topic>Genetics, Population - methods</topic><topic>Genome, Viral - genetics</topic><topic>Growth models</topic><topic>Hemorrhagic Fever, Ebola - epidemiology</topic><topic>Hemorrhagic Fever, Ebola - virology</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - virology</topic><topic>Information sources</topic><topic>Linear functions</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Nucleotide sequence</topic><topic>Orthomyxoviridae - genetics</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Population biology</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Population forecasting</topic><topic>Population number</topic><topic>Public health</topic><topic>Random variables</topic><topic>Research and Analysis Methods</topic><topic>Sampling</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical sampling</topic><topic>Statistics</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karcher, Michael D</creatorcontrib><creatorcontrib>Carvalho, Luiz Max</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Dudas, Gytis</creatorcontrib><creatorcontrib>Minin, Vladimir N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karcher, Michael D</au><au>Carvalho, Luiz Max</au><au>Suchard, Marc A</au><au>Dudas, Gytis</au><au>Minin, Vladimir N</au><au>Kosakovsky Pond, Sergei L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating effective population size changes from preferentially sampled genetic sequences</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-10-12</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>e1007774</spage><epage>e1007774</epage><pages>e1007774-e1007774</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33044955</pmid><doi>10.1371/journal.pcbi.1007774</doi><orcidid>https://orcid.org/0000-0002-0227-4158</orcidid><orcidid>https://orcid.org/0000-0002-1917-9288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-10, Vol.16 (10), p.e1007774-e1007774 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2460773076 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Analysis Bayes Theorem Bayesian analysis Biology and Life Sciences Computational Biology Computer and Information Sciences Ebolavirus - genetics Epidemics Geffen, David Gene sequencing Genealogy Genetics, Population - methods Genome, Viral - genetics Growth models Hemorrhagic Fever, Ebola - epidemiology Hemorrhagic Fever, Ebola - virology Humans Infectious diseases Influenza Influenza, Human - epidemiology Influenza, Human - virology Information sources Linear functions Markov analysis Mathematical models Medicine and Health Sciences Methods Models, Statistical Nucleotide sequence Orthomyxoviridae - genetics Population Population (statistical) Population biology Population Density Population Dynamics Population forecasting Population number Public health Random variables Research and Analysis Methods Sampling Software Statistical analysis Statistical models Statistical sampling Statistics Viral diseases Viruses |
title | Estimating effective population size changes from preferentially sampled genetic sequences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20effective%20population%20size%20changes%20from%20preferentially%20sampled%20genetic%20sequences&rft.jtitle=PLoS%20computational%20biology&rft.au=Karcher,%20Michael%20D&rft.date=2020-10-12&rft.volume=16&rft.issue=10&rft.spage=e1007774&rft.epage=e1007774&rft.pages=e1007774-e1007774&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007774&rft_dat=%3Cgale_plos_%3EA645337133%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-ab4d9dbf464327e282cdc4e5035dbf91cadd07c88e7308a764b6007170730e843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460773076&rft_id=info:pmid/33044955&rft_galeid=A645337133&rfr_iscdi=true |