Loading…

Assessing analytical convolution effects in diffusion studies: Applications to experimental and natural diffusion profiles

Given that all in-situ analytical techniques have a non-zero beam size, all measured profiles, resulting from diffusion or otherwise, will be artefactually elongated to some degree. Profiles where the total length over which the concentration changes approaches the resolution of the analytical techn...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-11, Vol.15 (11), p.e0241788-e0241788
Main Author: Jollands, Michael C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given that all in-situ analytical techniques have a non-zero beam size, all measured profiles, resulting from diffusion or otherwise, will be artefactually elongated to some degree. Profiles where the total length over which the concentration changes approaches the resolution of the analytical technique likely suffer from serious convolution; the measured profiles may be considerably elongated relative to the true profile. Resolving this effect is non-trivial, except for some specific combinations of profile type and beam geometry. In this study, a versatile method for numerically deconvoluting diffusion profiles acquired using techniques with Gaussian, Lorentzian, (pseudo-)Voigt, circular/elliptical or square/rectangular interaction volumes, is presented. A MATLAB code, including a user-friendly interface (PACE-the Program for Assessing Convolution Effects in diffusion studies), is also provided, and applied to several experimental and natural profiles interpreted as resulting from diffusion, showing various degrees of convolution.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0241788