Loading…

The plasma lipidome of the Quaker parrot (Myiopsitta monachus)

Dyslipidemias and lipid-accumulation disorders are common in captive parrots, in particular in Quaker parrots. Currently available diagnostic tests only measure a fraction of blood lipids and have overall problematic cross-species applicability. Comprehensively analyzing lipids in the plasma of parr...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-12, Vol.15 (12), p.e0240449-e0240449
Main Authors: Beaufrère, Hugues, Gardhouse, Sara M, Wood, R Darren, Stark, Ken D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dyslipidemias and lipid-accumulation disorders are common in captive parrots, in particular in Quaker parrots. Currently available diagnostic tests only measure a fraction of blood lipids and have overall problematic cross-species applicability. Comprehensively analyzing lipids in the plasma of parrots is the first step to better understand their lipid metabolism in health and disease, as well as to explore new lipid biomarkers. The plasma lipidome of 12 Quaker parrots was investigated using UHPLC-MS/MS with both targeted and untargeted methods. Targeted methods on 6 replicates measured 432 lipids comprised of sterol, cholesterol ester, bile acid, fatty acid, acylcarnitine, glycerolipid, glycerophospholipid, and sphingolipid panels. For untargeted lipidomics, precursor ion mass-to-charge ratios were matched to corresponding lipids using the LIPIDMAPS structure database and LipidBlast at the sum composition or acyl species level of information. Sterol lipids and glycerophospholipids constituted the majority of plasma lipids on a molar basis. The most common lipids detected with the targeted methods included free cholesterol, CE(18:2), CE(20:4) for sterol lipids; PC(36:2), PC(34:2), PC(34:1) for glycerophospholipids; TG(52:3), TG(54:4), TG(54:5), TG(52:2) for glycerolipids; SM(d18:1/16:0) for sphingolipids; and palmitic acid for fatty acyls. Over a thousand different lipid species were detected by untargeted lipidomics. Sex differences in the plasma lipidome were observed using heatmaps, principal component analysis, and discriminant analysis. This report presents the first comprehensive database of plasma lipid species in psittacine birds and paves the way for further research into blood lipid diagnostics and the impact of diet, diseases, and drugs on the parrot plasma lipidome.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0240449