Loading…

Effect of different designs of interspinous process devices on the instrumented and adjacent levels after double-level lumbar decompression surgery: A finite element analysis

Recently, various designs and material manufactured interspinous process devices (IPDs) are on the market in managing symptomatic lumbar spinal stenosis (LSS). However, atraumatic fracture of the intervening spinous process has been reported in patients, particularly, double or multiple level lumbar...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-12, Vol.15 (12), p.e0244571-e0244571
Main Authors: Lo, Hao-Ju, Chen, Hung-Ming, Kuo, Yi-Jie, Yang, Sai-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, various designs and material manufactured interspinous process devices (IPDs) are on the market in managing symptomatic lumbar spinal stenosis (LSS). However, atraumatic fracture of the intervening spinous process has been reported in patients, particularly, double or multiple level lumbar decompression surgery with IPDs. This study aimed to biomechanically investigate the effects of few commercial IPDs, namely DIAMTM, CoflexTM, and M-PEEK, which were implanted into the L2-3, L3-4 double-level lumbar spinal processes. A validated finite element model of musculoskeletal intact lumbar spinal column was modified to accommodate the numerical analysis of different implants. The range of motion (ROM) between each vertebra, stiffness of the implanted level, intra stress on the intervertebral discs and facet joints, and the contact forces on spinous processes were compared. Among the three implants, the Coflex system showed the largest ROM restriction in extension and caused the highest stress over the disc annulus at the adjacent levels, as well as the sandwich phenomenon on the spinous process at the instrumented levels. Further, the DIAM device provided a superior loading-sharing between the two bridge supports, and the M-PEEK system offered a superior load-sharing from the superior spinous process to the lower pedicle screw. The limited motion at the instrumented segments were compensated by the upper and lower adjacent functional units, however, this increasing ROM and stress would accelerate the degeneration of un-instrumented segments.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0244571