Loading…
Could LASCA-imaging of GB-speckles be applied for a high discrimination and typing of pathogenic bacteria?
In this article, the method of analysis of GB-speckles (gene-based speckles) has been adapted to the problem of detecting the differences in a group of genes (usually 5-7), used in Multi Locus Sequence Typing (MLST). This method is based on s-LASCA imaging (spatial Laser Speckle Contrast Analysis) o...
Saved in:
Published in: | PloS one 2021-01, Vol.16 (1), p.e0245657-e0245657 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, the method of analysis of GB-speckles (gene-based speckles) has been adapted to the problem of detecting the differences in a group of genes (usually 5-7), used in Multi Locus Sequence Typing (MLST). This method is based on s-LASCA imaging (spatial Laser Speckle Contrast Analysis) of virtual GB-speckle and on the technique of RGB coordinates for GB-speckles, processed by the s-LASCA method. A very high sensitivity and accuracy of the new method for detecting gene polymorphism as a great alternative to classical MLST has been demonstrated. The analysis of GB-speckles, obtained for the concatenated sequences of seven genes (gatA, gidA, enoA, fumC, hemN, hflX, oppA) of three different Chlamydia trachomatis strains (E/Bour, ST94; G/9301, ST95; G/11222, ST94) has been applied as the model. The high efficiency of usage of s-LASCA-imaging of GB-speckles has been shown. The data obtained represent a significant progress in digital biology as a whole and improvements in the bio-digitalization of bacterial DNA. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0245657 |