Loading…

Lipidomic and metabolomic profiles of Coffea canephora L. beans cultivated in Southwestern Nigeria

Coffee (Coffea spp.) is one of the most popular refreshing beverages globally. Coffee lipid diversity has untapped potential for improving coffee marketability because lipids contribute significantly to both the health benefits and cup quality of coffee. However, in spite of its potential importance...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-02, Vol.16 (2), p.e0234758
Main Authors: Anagbogu, Chinyere F, Zhou, Jiaqi, Olasupo, Festus O, Baba Nitsa, Mohammed, Beckles, Diane M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coffee (Coffea spp.) is one of the most popular refreshing beverages globally. Coffee lipid diversity has untapped potential for improving coffee marketability because lipids contribute significantly to both the health benefits and cup quality of coffee. However, in spite of its potential importance, there have not been extensive studies of lipids among C. canephora genotypes. In this study, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) profiling of lipid molecules was performed for 30 genotypes consisting of 15 cultivated and 15 conserved genotypes of C. canephora in Southwestern Nigeria. We identified nine classes of lipids in the 30 genotypes which belong to the 'Niaouli', 'Kouillou' and 'Java Robusta' group: among these, the most abundant lipid class was the triacylglycerols, followed by the fatty acyls group. Although 'Niaouli' diverged from the 'Kouillou' and 'Java Robusta' genotypes when their lipid profiles were compared, there was greater similarity in their lipid composition by multivariate analysis, compared to that observed when their primary metabolites and especially their secondary metabolite profiles were examined. However, distinctions could be made among genotypes. Members of the fatty acyls group had the greatest power to discriminate among genotypes, however, lipids that were low in abundance e.g. a cholesterol ester (20:3), and phosphotidylethanolamine (34:0) were also helpful to understand the relationships among C. canephora genotypes. The divergent lipid profiles identified among the C. canephora genotypes, correlated with their Single Nucleotide Polymorphism grouping as assessed by genotype-by-sequencing, and will be exploited to improve coffee cup quality.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0234758