Loading…

Ultra-precise quantification of mRNA targets across a broad dynamic range with nanoreactor beads

Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of fo...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-03, Vol.16 (3), p.e0242529-e0242529
Main Authors: Loncarevic, Ivan Francisco, Toepfer, Susanne, Hubold, Stephan, Klingner, Susanne, Kanitz, Lea, Ellinger, Thomas, Steinmetzer, Katrin, Ernst, Thomas, Hochhaus, Andreas, Ermantraut, Eugen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-b1bfc6921a924af3c1031885287452442d39db48461623718928d24a93b153b63
cites cdi_FETCH-LOGICAL-c692t-b1bfc6921a924af3c1031885287452442d39db48461623718928d24a93b153b63
container_end_page e0242529
container_issue 3
container_start_page e0242529
container_title PloS one
container_volume 16
creator Loncarevic, Ivan Francisco
Toepfer, Susanne
Hubold, Stephan
Klingner, Susanne
Kanitz, Lea
Ellinger, Thomas
Steinmetzer, Katrin
Ernst, Thomas
Hochhaus, Andreas
Ermantraut, Eugen
description Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of four orders of magnitude. However digital assays are complex and require sophisticated microfluidic tools. Here we present an assay format that enables ultra-precise quantification of RNA targets in a single measurement across a dynamic range of more than six orders of magnitude. The approach is based on hydrogel beads that provide for microfluidic free compartmentalization of the sample as they are used as nanoreactors for reverse transcription, PCR amplification and combined real time and digital detection of gene transcripts. We have applied these nanoreactor beads for establishing an assay for the detection and quantification of BCR-ABL1 fusion transcripts. The assay has been characterized for its precision and linear dynamic range. A comparison of the new method against conventional real time RT-PCR analysis (reference method) with clinical samples from patients with chronic myeloid leukemia (CML) revealed excellent concordance with Pearsons correlation coefficient of 0.983 and slope of 1.08.
doi_str_mv 10.1371/journal.pone.0242529
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2502780930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655465762</galeid><doaj_id>oai_doaj_org_article_5f03d0793b3c44cc89838b11cb89b93d</doaj_id><sourcerecordid>A655465762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b1bfc6921a924af3c1031885287452442d39db48461623718928d24a93b153b63</originalsourceid><addsrcrecordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJrYr9MqiYulSYmDcarcRwndZXane2w7dvjtNnUoD0gPxzL_p2_fW5Z9hqCOcQl_LR2vbeym2-d1XOACKKIP8mOIcdoViCAnx7sj7IXIawBoJgVxfPsCOMSU1jS4-z3VRe9nG29Vibo_LqXNprGKBmNs7lr8s3l90UepW91DLlU3oVk8so7Wef1nZUbo3IvbavzGxNXuZXWeS1VdD6vtKzDy-xZI7ugX432JLv68vnn2bfZ-cXX5dnifKYKjuKsglUz7KDkiMgGKwgwZIwiVhKKCEE15nVFGClggVL4jCNWJ5LjClJcFfgke7vX3XYuiDE5QSAKUMkAxyARyz1RO7kWW2820t8JJ43YHTjfCumjUZ0WtAG4BmUSx4oQpRhnmFUQqorxiuM6aZ2Or_XVRtdK25TFbiI6vbFmJVr3R5S8hBSyJPBhFPDuutchio0JSnedtNr1u39jQijgKKHv_kEfj26kWpkCMLZx6V01iIpFQSkpaFkMWvNHqLRqnQqZOqkx6Xzi8HHikJiob2Mr-xDE8sfl_7MXv6bs-wN2pWUXV8F1_dB2YQqSPbhrPa-bhyRDIIZBuM-GGAZBjIOQ3N4cFujB6b7z8V-1pQEj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502780930</pqid></control><display><type>article</type><title>Ultra-precise quantification of mRNA targets across a broad dynamic range with nanoreactor beads</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Loncarevic, Ivan Francisco ; Toepfer, Susanne ; Hubold, Stephan ; Klingner, Susanne ; Kanitz, Lea ; Ellinger, Thomas ; Steinmetzer, Katrin ; Ernst, Thomas ; Hochhaus, Andreas ; Ermantraut, Eugen</creator><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Loncarevic, Ivan Francisco ; Toepfer, Susanne ; Hubold, Stephan ; Klingner, Susanne ; Kanitz, Lea ; Ellinger, Thomas ; Steinmetzer, Katrin ; Ernst, Thomas ; Hochhaus, Andreas ; Ermantraut, Eugen ; Kalendar, Ruslan</creatorcontrib><description>Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of four orders of magnitude. However digital assays are complex and require sophisticated microfluidic tools. Here we present an assay format that enables ultra-precise quantification of RNA targets in a single measurement across a dynamic range of more than six orders of magnitude. The approach is based on hydrogel beads that provide for microfluidic free compartmentalization of the sample as they are used as nanoreactors for reverse transcription, PCR amplification and combined real time and digital detection of gene transcripts. We have applied these nanoreactor beads for establishing an assay for the detection and quantification of BCR-ABL1 fusion transcripts. The assay has been characterized for its precision and linear dynamic range. A comparison of the new method against conventional real time RT-PCR analysis (reference method) with clinical samples from patients with chronic myeloid leukemia (CML) revealed excellent concordance with Pearsons correlation coefficient of 0.983 and slope of 1.08.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242529</identifier><identifier>PMID: 33735175</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Beads ; Biochemical assays ; Biology and Life Sciences ; Chambers ; CMOS ; Engineering and Technology ; Fluorescence ; Genetic aspects ; Hydrogels ; Methods ; mRNA ; Nucleic acids ; Physical Sciences ; Polymerase chain reaction ; Polymers ; Reagents ; Research and Analysis Methods ; Temperature ; Temperature control ; Thermal cycling ; Workflow ; Yttrium</subject><ispartof>PloS one, 2021-03, Vol.16 (3), p.e0242529-e0242529</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Loncarevic et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Loncarevic et al 2021 Loncarevic et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b1bfc6921a924af3c1031885287452442d39db48461623718928d24a93b153b63</citedby><cites>FETCH-LOGICAL-c692t-b1bfc6921a924af3c1031885287452442d39db48461623718928d24a93b153b63</cites><orcidid>0000-0002-2763-5765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2502780930/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2502780930?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33735175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Loncarevic, Ivan Francisco</creatorcontrib><creatorcontrib>Toepfer, Susanne</creatorcontrib><creatorcontrib>Hubold, Stephan</creatorcontrib><creatorcontrib>Klingner, Susanne</creatorcontrib><creatorcontrib>Kanitz, Lea</creatorcontrib><creatorcontrib>Ellinger, Thomas</creatorcontrib><creatorcontrib>Steinmetzer, Katrin</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Hochhaus, Andreas</creatorcontrib><creatorcontrib>Ermantraut, Eugen</creatorcontrib><title>Ultra-precise quantification of mRNA targets across a broad dynamic range with nanoreactor beads</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of four orders of magnitude. However digital assays are complex and require sophisticated microfluidic tools. Here we present an assay format that enables ultra-precise quantification of RNA targets in a single measurement across a dynamic range of more than six orders of magnitude. The approach is based on hydrogel beads that provide for microfluidic free compartmentalization of the sample as they are used as nanoreactors for reverse transcription, PCR amplification and combined real time and digital detection of gene transcripts. We have applied these nanoreactor beads for establishing an assay for the detection and quantification of BCR-ABL1 fusion transcripts. The assay has been characterized for its precision and linear dynamic range. A comparison of the new method against conventional real time RT-PCR analysis (reference method) with clinical samples from patients with chronic myeloid leukemia (CML) revealed excellent concordance with Pearsons correlation coefficient of 0.983 and slope of 1.08.</description><subject>Beads</subject><subject>Biochemical assays</subject><subject>Biology and Life Sciences</subject><subject>Chambers</subject><subject>CMOS</subject><subject>Engineering and Technology</subject><subject>Fluorescence</subject><subject>Genetic aspects</subject><subject>Hydrogels</subject><subject>Methods</subject><subject>mRNA</subject><subject>Nucleic acids</subject><subject>Physical Sciences</subject><subject>Polymerase chain reaction</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Research and Analysis Methods</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Thermal cycling</subject><subject>Workflow</subject><subject>Yttrium</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJrYr9MqiYulSYmDcarcRwndZXane2w7dvjtNnUoD0gPxzL_p2_fW5Z9hqCOcQl_LR2vbeym2-d1XOACKKIP8mOIcdoViCAnx7sj7IXIawBoJgVxfPsCOMSU1jS4-z3VRe9nG29Vibo_LqXNprGKBmNs7lr8s3l90UepW91DLlU3oVk8so7Wef1nZUbo3IvbavzGxNXuZXWeS1VdD6vtKzDy-xZI7ugX432JLv68vnn2bfZ-cXX5dnifKYKjuKsglUz7KDkiMgGKwgwZIwiVhKKCEE15nVFGClggVL4jCNWJ5LjClJcFfgke7vX3XYuiDE5QSAKUMkAxyARyz1RO7kWW2820t8JJ43YHTjfCumjUZ0WtAG4BmUSx4oQpRhnmFUQqorxiuM6aZ2Or_XVRtdK25TFbiI6vbFmJVr3R5S8hBSyJPBhFPDuutchio0JSnedtNr1u39jQijgKKHv_kEfj26kWpkCMLZx6V01iIpFQSkpaFkMWvNHqLRqnQqZOqkx6Xzi8HHikJiob2Mr-xDE8sfl_7MXv6bs-wN2pWUXV8F1_dB2YQqSPbhrPa-bhyRDIIZBuM-GGAZBjIOQ3N4cFujB6b7z8V-1pQEj</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Loncarevic, Ivan Francisco</creator><creator>Toepfer, Susanne</creator><creator>Hubold, Stephan</creator><creator>Klingner, Susanne</creator><creator>Kanitz, Lea</creator><creator>Ellinger, Thomas</creator><creator>Steinmetzer, Katrin</creator><creator>Ernst, Thomas</creator><creator>Hochhaus, Andreas</creator><creator>Ermantraut, Eugen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2763-5765</orcidid></search><sort><creationdate>20210318</creationdate><title>Ultra-precise quantification of mRNA targets across a broad dynamic range with nanoreactor beads</title><author>Loncarevic, Ivan Francisco ; Toepfer, Susanne ; Hubold, Stephan ; Klingner, Susanne ; Kanitz, Lea ; Ellinger, Thomas ; Steinmetzer, Katrin ; Ernst, Thomas ; Hochhaus, Andreas ; Ermantraut, Eugen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b1bfc6921a924af3c1031885287452442d39db48461623718928d24a93b153b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beads</topic><topic>Biochemical assays</topic><topic>Biology and Life Sciences</topic><topic>Chambers</topic><topic>CMOS</topic><topic>Engineering and Technology</topic><topic>Fluorescence</topic><topic>Genetic aspects</topic><topic>Hydrogels</topic><topic>Methods</topic><topic>mRNA</topic><topic>Nucleic acids</topic><topic>Physical Sciences</topic><topic>Polymerase chain reaction</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Research and Analysis Methods</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Thermal cycling</topic><topic>Workflow</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loncarevic, Ivan Francisco</creatorcontrib><creatorcontrib>Toepfer, Susanne</creatorcontrib><creatorcontrib>Hubold, Stephan</creatorcontrib><creatorcontrib>Klingner, Susanne</creatorcontrib><creatorcontrib>Kanitz, Lea</creatorcontrib><creatorcontrib>Ellinger, Thomas</creatorcontrib><creatorcontrib>Steinmetzer, Katrin</creatorcontrib><creatorcontrib>Ernst, Thomas</creatorcontrib><creatorcontrib>Hochhaus, Andreas</creatorcontrib><creatorcontrib>Ermantraut, Eugen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loncarevic, Ivan Francisco</au><au>Toepfer, Susanne</au><au>Hubold, Stephan</au><au>Klingner, Susanne</au><au>Kanitz, Lea</au><au>Ellinger, Thomas</au><au>Steinmetzer, Katrin</au><au>Ernst, Thomas</au><au>Hochhaus, Andreas</au><au>Ermantraut, Eugen</au><au>Kalendar, Ruslan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-precise quantification of mRNA targets across a broad dynamic range with nanoreactor beads</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>e0242529</spage><epage>e0242529</epage><pages>e0242529-e0242529</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of four orders of magnitude. However digital assays are complex and require sophisticated microfluidic tools. Here we present an assay format that enables ultra-precise quantification of RNA targets in a single measurement across a dynamic range of more than six orders of magnitude. The approach is based on hydrogel beads that provide for microfluidic free compartmentalization of the sample as they are used as nanoreactors for reverse transcription, PCR amplification and combined real time and digital detection of gene transcripts. We have applied these nanoreactor beads for establishing an assay for the detection and quantification of BCR-ABL1 fusion transcripts. The assay has been characterized for its precision and linear dynamic range. A comparison of the new method against conventional real time RT-PCR analysis (reference method) with clinical samples from patients with chronic myeloid leukemia (CML) revealed excellent concordance with Pearsons correlation coefficient of 0.983 and slope of 1.08.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33735175</pmid><doi>10.1371/journal.pone.0242529</doi><tpages>e0242529</tpages><orcidid>https://orcid.org/0000-0002-2763-5765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-03, Vol.16 (3), p.e0242529-e0242529
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2502780930
source Publicly Available Content (ProQuest); PubMed Central
subjects Beads
Biochemical assays
Biology and Life Sciences
Chambers
CMOS
Engineering and Technology
Fluorescence
Genetic aspects
Hydrogels
Methods
mRNA
Nucleic acids
Physical Sciences
Polymerase chain reaction
Polymers
Reagents
Research and Analysis Methods
Temperature
Temperature control
Thermal cycling
Workflow
Yttrium
title Ultra-precise quantification of mRNA targets across a broad dynamic range with nanoreactor beads
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-precise%20quantification%20of%20mRNA%20targets%20across%20a%20broad%20dynamic%20range%20with%20nanoreactor%20beads&rft.jtitle=PloS%20one&rft.au=Loncarevic,%20Ivan%20Francisco&rft.date=2021-03-18&rft.volume=16&rft.issue=3&rft.spage=e0242529&rft.epage=e0242529&rft.pages=e0242529-e0242529&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242529&rft_dat=%3Cgale_plos_%3EA655465762%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-b1bfc6921a924af3c1031885287452442d39db48461623718928d24a93b153b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502780930&rft_id=info:pmid/33735175&rft_galeid=A655465762&rfr_iscdi=true