Loading…

4-phenylbutyrate exerts stage-specific effects on cardiac differentiation via HDAC inhibition

4-phenylbutyrate (4-PBA), a terminal aromatic substituted fatty acid, is used widely to specifically attenuate endoplasmic reticulum (ER) stress and inhibit histone deacetylases (HDACs). In this study, we investigated the effect of 4-PBA on cardiac differentiation of mouse embryonic stem (ES) cells....

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-04, Vol.16 (4), p.e0250267-e0250267
Main Authors: Li, Yanming, Weng, Xiaofei, Wang, Pingping, He, Zezhao, Cheng, Siya, Wang, Dongxing, Li, Xianhui, Cheng, Guanchang, Li, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:4-phenylbutyrate (4-PBA), a terminal aromatic substituted fatty acid, is used widely to specifically attenuate endoplasmic reticulum (ER) stress and inhibit histone deacetylases (HDACs). In this study, we investigated the effect of 4-PBA on cardiac differentiation of mouse embryonic stem (ES) cells. Herein, we found that 4-PBA regulated cardiac differentiation in a stage-specific manner just like trichostatin A (TSA), a well-known HDAC inhibitor. 4-PBA and TSA favored the early-stage differentiation, but inhibited the late-stage cardiac differentiation via acetylation. Mechanistic studies suggested that HDACs exhibited a temporal expression profiling during cardiomyogenesis. Hdac1 expression underwent a decrease at the early stage, while was upregulated at the late stage of cardiac induction. During the early stage of cardiac differentiation, acetylation favored the induction of Isl1 and Nkx2.5, two transcription factors of cardiac progenitors. During the late stage, histone acetylation induced by 4-PBA or TSA interrupted the gene silence of Oct4, a key determinant of self-renewal and pluripotency. Thereby, 4-PBA and TSA at the late stage hindered the exit from pluripotency, and attenuated the expression of cardiac-specific contractile proteins. Overexpression of HDAC1 and p300 exerted different effects at the distinct stages of cardiac induction. Collectively, our study shows that timely manipulation of HDACs exhibits distinct effects on cardiac differentiation. And the context-dependent effects of HDAC inhibitors depend on cell differentiation states marked by the temporal expression of pluripotency-associated genes.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0250267