Loading…
Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station
Robotic total stations have been widely used in continuous automatic monitoring of dam deformations. In this regard, monitoring accuracy is an important factor affecting deformation analysis. First the displacements calculation methods for dam deformation monitoring with total stations are presented...
Saved in:
Published in: | PloS one 2021-05, Vol.16 (5), p.e0251281-e0251281 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-489fc5df9bcaed7ff2942b79a38c78bc058a24c498caac9a4563e705ec9254e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-489fc5df9bcaed7ff2942b79a38c78bc058a24c498caac9a4563e705ec9254e93 |
container_end_page | e0251281 |
container_issue | 5 |
container_start_page | e0251281 |
container_title | PloS one |
container_volume | 16 |
creator | Zhou, Jianguo Shi, Bo Liu, Guanlan Ju, Shujun |
description | Robotic total stations have been widely used in continuous automatic monitoring of dam deformations. In this regard, monitoring accuracy is an important factor affecting deformation analysis. First the displacements calculation methods for dam deformation monitoring with total stations are presented, and the corresponding mean square error formulas are derived. Then for errors caused by atmospheric refraction, two correction methods are described. Simulations were conducted to compare the displacement accuracy calculated through different methods. It indicated that the difference between polar coordinate method and forward intersection is less than 0.5mm within around 400m' monitoring range, and in such cases, the polar coordinate method is preferred, as only one total station is required. Refraction correction tests with observations from two dams demonstrated that both correction methods could effectively enhance the monitoring accuracy. For observation correction, correction through the closest reference point achieves better correction results. |
doi_str_mv | 10.1371/journal.pone.0251281 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2522651366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660916616</galeid><doaj_id>oai_doaj_org_article_e8eceee82024402e9aac0bdf9d1eeebb</doaj_id><sourcerecordid>A660916616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-489fc5df9bcaed7ff2942b79a38c78bc058a24c498caac9a4563e705ec9254e93</originalsourceid><addsrcrecordid>eNqNk0uL2zAQx01p6T7ab1BaQ2FpD0n1sGXpUghLH4GFhb6uQpbHjoJtpZLcNt--cuJd4rKHooPl0W_-MxrNJMkLjJaYFvjd1g6uV-1yZ3tYIpJjwvGj5BwLShaMIPr4ZH-WXHi_RSinnLGnyRmlImecivOkWWk9OKX3qYpie298auu0Ul1aQW1dp4KxfdrZ3gTrTN9ErEq1dQ704STCDuoocPj7bcImdba0weg02KDa1IeDxLPkSa1aD8-n72Xy_eOHb9efFze3n9bXq5uFZoKERcZFrfOqFqVWUBV1TURGykIoynXBS41yrkimM8G1UlqoLGcUCpSDFiTPQNDL5NVRd9daL6caeUlyQliOKWORWB-Jyqqt3DnTKbeXVhl5MFjXSOVi_i1I4KABgBNEsgwREDEmKmN2FY7msoxa76doQ9lBpaEPTrUz0flJbzaysb8kxyg-DooCbyYBZ38O4IPsjNfQtqoHOxzyzmheYD6ir_9BH77dRDUqXsD0tY1x9SgqV4whgRnDI7V8gIqrgs7o2FC1ifaZw9uZQ2QC_AmNGryX669f_p-9_TFnr07YDag2bLxth7Fl_BzMjqB21vvYcvdFxkiO83BXDTnOg5zmIbq9PH2ge6e7AaB_AZFWCGg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522651366</pqid></control><display><type>article</type><title>Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhou, Jianguo ; Shi, Bo ; Liu, Guanlan ; Ju, Shujun</creator><contributor>Mosa, Ahmed Mancy</contributor><creatorcontrib>Zhou, Jianguo ; Shi, Bo ; Liu, Guanlan ; Ju, Shujun ; Mosa, Ahmed Mancy</creatorcontrib><description>Robotic total stations have been widely used in continuous automatic monitoring of dam deformations. In this regard, monitoring accuracy is an important factor affecting deformation analysis. First the displacements calculation methods for dam deformation monitoring with total stations are presented, and the corresponding mean square error formulas are derived. Then for errors caused by atmospheric refraction, two correction methods are described. Simulations were conducted to compare the displacement accuracy calculated through different methods. It indicated that the difference between polar coordinate method and forward intersection is less than 0.5mm within around 400m' monitoring range, and in such cases, the polar coordinate method is preferred, as only one total station is required. Refraction correction tests with observations from two dams demonstrated that both correction methods could effectively enhance the monitoring accuracy. For observation correction, correction through the closest reference point achieves better correction results.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251281</identifier><identifier>PMID: 33956839</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Atmospheric conditions ; China ; Civil engineering ; Dams ; Data collection ; Deformation ; Deformations (Mechanics) ; Earth Sciences ; Engineering and Technology ; Engineering research ; Maintenance and repair ; Mechanical properties ; Medicine and Health Sciences ; Methods ; Monitoring ; Monitoring systems ; Physical Sciences ; Refraction ; Research and Analysis Methods ; Robotics ; Robots, Industrial ; Sensors ; Stations ; Tunnels</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0251281-e0251281</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Zhou et al 2021 Zhou et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-489fc5df9bcaed7ff2942b79a38c78bc058a24c498caac9a4563e705ec9254e93</citedby><cites>FETCH-LOGICAL-c692t-489fc5df9bcaed7ff2942b79a38c78bc058a24c498caac9a4563e705ec9254e93</cites><orcidid>0000-0002-8615-6174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2522651366/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2522651366?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33956839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mosa, Ahmed Mancy</contributor><creatorcontrib>Zhou, Jianguo</creatorcontrib><creatorcontrib>Shi, Bo</creatorcontrib><creatorcontrib>Liu, Guanlan</creatorcontrib><creatorcontrib>Ju, Shujun</creatorcontrib><title>Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Robotic total stations have been widely used in continuous automatic monitoring of dam deformations. In this regard, monitoring accuracy is an important factor affecting deformation analysis. First the displacements calculation methods for dam deformation monitoring with total stations are presented, and the corresponding mean square error formulas are derived. Then for errors caused by atmospheric refraction, two correction methods are described. Simulations were conducted to compare the displacement accuracy calculated through different methods. It indicated that the difference between polar coordinate method and forward intersection is less than 0.5mm within around 400m' monitoring range, and in such cases, the polar coordinate method is preferred, as only one total station is required. Refraction correction tests with observations from two dams demonstrated that both correction methods could effectively enhance the monitoring accuracy. For observation correction, correction through the closest reference point achieves better correction results.</description><subject>Accuracy</subject><subject>Atmospheric conditions</subject><subject>China</subject><subject>Civil engineering</subject><subject>Dams</subject><subject>Data collection</subject><subject>Deformation</subject><subject>Deformations (Mechanics)</subject><subject>Earth Sciences</subject><subject>Engineering and Technology</subject><subject>Engineering research</subject><subject>Maintenance and repair</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Physical Sciences</subject><subject>Refraction</subject><subject>Research and Analysis Methods</subject><subject>Robotics</subject><subject>Robots, Industrial</subject><subject>Sensors</subject><subject>Stations</subject><subject>Tunnels</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0uL2zAQx01p6T7ab1BaQ2FpD0n1sGXpUghLH4GFhb6uQpbHjoJtpZLcNt--cuJd4rKHooPl0W_-MxrNJMkLjJaYFvjd1g6uV-1yZ3tYIpJjwvGj5BwLShaMIPr4ZH-WXHi_RSinnLGnyRmlImecivOkWWk9OKX3qYpie298auu0Ul1aQW1dp4KxfdrZ3gTrTN9ErEq1dQ704STCDuoocPj7bcImdba0weg02KDa1IeDxLPkSa1aD8-n72Xy_eOHb9efFze3n9bXq5uFZoKERcZFrfOqFqVWUBV1TURGykIoynXBS41yrkimM8G1UlqoLGcUCpSDFiTPQNDL5NVRd9daL6caeUlyQliOKWORWB-Jyqqt3DnTKbeXVhl5MFjXSOVi_i1I4KABgBNEsgwREDEmKmN2FY7msoxa76doQ9lBpaEPTrUz0flJbzaysb8kxyg-DooCbyYBZ38O4IPsjNfQtqoHOxzyzmheYD6ir_9BH77dRDUqXsD0tY1x9SgqV4whgRnDI7V8gIqrgs7o2FC1ifaZw9uZQ2QC_AmNGryX669f_p-9_TFnr07YDag2bLxth7Fl_BzMjqB21vvYcvdFxkiO83BXDTnOg5zmIbq9PH2ge6e7AaB_AZFWCGg</recordid><startdate>20210506</startdate><enddate>20210506</enddate><creator>Zhou, Jianguo</creator><creator>Shi, Bo</creator><creator>Liu, Guanlan</creator><creator>Ju, Shujun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8615-6174</orcidid></search><sort><creationdate>20210506</creationdate><title>Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station</title><author>Zhou, Jianguo ; Shi, Bo ; Liu, Guanlan ; Ju, Shujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-489fc5df9bcaed7ff2942b79a38c78bc058a24c498caac9a4563e705ec9254e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Atmospheric conditions</topic><topic>China</topic><topic>Civil engineering</topic><topic>Dams</topic><topic>Data collection</topic><topic>Deformation</topic><topic>Deformations (Mechanics)</topic><topic>Earth Sciences</topic><topic>Engineering and Technology</topic><topic>Engineering research</topic><topic>Maintenance and repair</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Physical Sciences</topic><topic>Refraction</topic><topic>Research and Analysis Methods</topic><topic>Robotics</topic><topic>Robots, Industrial</topic><topic>Sensors</topic><topic>Stations</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianguo</creatorcontrib><creatorcontrib>Shi, Bo</creatorcontrib><creatorcontrib>Liu, Guanlan</creatorcontrib><creatorcontrib>Ju, Shujun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianguo</au><au>Shi, Bo</au><au>Liu, Guanlan</au><au>Ju, Shujun</au><au>Mosa, Ahmed Mancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-05-06</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0251281</spage><epage>e0251281</epage><pages>e0251281-e0251281</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Robotic total stations have been widely used in continuous automatic monitoring of dam deformations. In this regard, monitoring accuracy is an important factor affecting deformation analysis. First the displacements calculation methods for dam deformation monitoring with total stations are presented, and the corresponding mean square error formulas are derived. Then for errors caused by atmospheric refraction, two correction methods are described. Simulations were conducted to compare the displacement accuracy calculated through different methods. It indicated that the difference between polar coordinate method and forward intersection is less than 0.5mm within around 400m' monitoring range, and in such cases, the polar coordinate method is preferred, as only one total station is required. Refraction correction tests with observations from two dams demonstrated that both correction methods could effectively enhance the monitoring accuracy. For observation correction, correction through the closest reference point achieves better correction results.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33956839</pmid><doi>10.1371/journal.pone.0251281</doi><tpages>e0251281</tpages><orcidid>https://orcid.org/0000-0002-8615-6174</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0251281-e0251281 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2522651366 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Atmospheric conditions China Civil engineering Dams Data collection Deformation Deformations (Mechanics) Earth Sciences Engineering and Technology Engineering research Maintenance and repair Mechanical properties Medicine and Health Sciences Methods Monitoring Monitoring systems Physical Sciences Refraction Research and Analysis Methods Robotics Robots, Industrial Sensors Stations Tunnels |
title | Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20analysis%20of%20dam%20deformation%20monitoring%20and%20correction%20of%20refraction%20with%20robotic%20total%20station&rft.jtitle=PloS%20one&rft.au=Zhou,%20Jianguo&rft.date=2021-05-06&rft.volume=16&rft.issue=5&rft.spage=e0251281&rft.epage=e0251281&rft.pages=e0251281-e0251281&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251281&rft_dat=%3Cgale_plos_%3EA660916616%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-489fc5df9bcaed7ff2942b79a38c78bc058a24c498caac9a4563e705ec9254e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522651366&rft_id=info:pmid/33956839&rft_galeid=A660916616&rfr_iscdi=true |