Loading…
Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior
Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sex...
Saved in:
Published in: | PLoS genetics 2021-04, Vol.17 (4), p.e1009240-e1009240 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sexes. We developed a method to purify cell-type-specific chromatin (Chromatag), using a tagged histone H2B variant that is expressed using the versatile Gal4/UAS gene expression system. Here, we use Chromatag to evaluate five chromatin modifications, at three life stages in both sexes. We find substantial changes in chromatin modification profiles across development and fewer differences between males and females. Additionally, we find chromatin modifications that persist in different sets of genes from pupal to adult stages, which may point to genes important for cell fate determination in fru P1 neurons. We generated cell-type-specific RNA-seq data sets, using translating ribosome affinity purification (TRAP). We identify actively translated genes in fru P1 neurons, revealing novel stage- and sex-differences in gene expression. We also find chromatin modification enrichment patterns that are associated with gene expression. Next, we use the chromatin modification data to identify cell-type-specific super-enhancer-containing genes. We show that genes with super-enhancers in fru P1 neurons differ across development and between the sexes. We validated that a set of genes are expressed in fru P1 neurons, which were chosen based on having a super-enhancer and TRAP-enriched expression in fru P1 neurons. |
---|---|
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1009240 |