Loading…

Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior

Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sex...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2021-04, Vol.17 (4), p.e1009240-e1009240
Main Authors: Palmateer, Colleen M, Moseley, Shawn C, Ray, Surjyendu, Brovero, Savannah G, Arbeitman, Michelle N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-1e94ee8d5539090b8827c24a31c54ad430066532ff6bb292a42880c9412f06ce3
cites cdi_FETCH-LOGICAL-c726t-1e94ee8d5539090b8827c24a31c54ad430066532ff6bb292a42880c9412f06ce3
container_end_page e1009240
container_issue 4
container_start_page e1009240
container_title PLoS genetics
container_volume 17
creator Palmateer, Colleen M
Moseley, Shawn C
Ray, Surjyendu
Brovero, Savannah G
Arbeitman, Michelle N
description Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sexes. We developed a method to purify cell-type-specific chromatin (Chromatag), using a tagged histone H2B variant that is expressed using the versatile Gal4/UAS gene expression system. Here, we use Chromatag to evaluate five chromatin modifications, at three life stages in both sexes. We find substantial changes in chromatin modification profiles across development and fewer differences between males and females. Additionally, we find chromatin modifications that persist in different sets of genes from pupal to adult stages, which may point to genes important for cell fate determination in fru P1 neurons. We generated cell-type-specific RNA-seq data sets, using translating ribosome affinity purification (TRAP). We identify actively translated genes in fru P1 neurons, revealing novel stage- and sex-differences in gene expression. We also find chromatin modification enrichment patterns that are associated with gene expression. Next, we use the chromatin modification data to identify cell-type-specific super-enhancer-containing genes. We show that genes with super-enhancers in fru P1 neurons differ across development and between the sexes. We validated that a set of genes are expressed in fru P1 neurons, which were chosen based on having a super-enhancer and TRAP-enriched expression in fru P1 neurons.
doi_str_mv 10.1371/journal.pgen.1009240
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528225443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660624065</galeid><doaj_id>oai_doaj_org_article_dc2b654b1235447088e788d5110edf9c</doaj_id><sourcerecordid>A660624065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-1e94ee8d5539090b8827c24a31c54ad430066532ff6bb292a42880c9412f06ce3</originalsourceid><addsrcrecordid>eNqVk1uL1DAUx4so7jr6DUQDguhDxyRN2_RFGNbbwOKCt9eQpqfTLJ2mm6TDzquf3HSnu0xlH5Q-NJz8zv_k3KLoOcFLkuTk3aUZbCfbZb-BbkkwLijDD6JTkqZJnDPMHh6dT6Inzl1inKS8yB9HJ0lSYEIyfhr9XgWNvdMOmRopaNvY73uIXQ9K11oh1VizlV53aGuq0RLOpnNIdhUKgQHBdW_BuWBEAfpgjTN9o1uJOhjsSPpGelRpC8ojC7011aC83gEqoZE7bezT6FEtWwfPpv8i-vnp44-zL_H5xef12eo8VjnNfEygYAC8CjkVuMAl5zRXlMmEqJTJiiUYZ1ma0LrOypIWVDLKOVYFI7TGmYJkEb086PatcWIqnxM0pZzSlLEkEOsDURl5KXqrt9LuhZFa3BiM3QhpvVYtiErRMktZSWgSXHPMOeQ8PI4QDFVdqKD1foo2lFuoFHTeynYmOr_pdCM2Zic4wRQH2UX0ZhKw5moA58VWu7FDsgMzjO8moZk4J1lAX_2F3p_dRG1kSEB3tQlx1SgqVlmGszA_oX6LaHkPFb4KtlqZDmod7DOHtzOHwHi49hs5OCfW37_9B_v139mLX3P29RHbgGx940w73MzqHGQHUIVBdRbqu4YQLMa1uq2cGNdKTGsV3F4cN_PO6XaPkj_eaB0C</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528225443</pqid></control><display><type>article</type><title>Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Palmateer, Colleen M ; Moseley, Shawn C ; Ray, Surjyendu ; Brovero, Savannah G ; Arbeitman, Michelle N</creator><contributor>Schoofs, Liliane</contributor><creatorcontrib>Palmateer, Colleen M ; Moseley, Shawn C ; Ray, Surjyendu ; Brovero, Savannah G ; Arbeitman, Michelle N ; Schoofs, Liliane</creatorcontrib><description>Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sexes. We developed a method to purify cell-type-specific chromatin (Chromatag), using a tagged histone H2B variant that is expressed using the versatile Gal4/UAS gene expression system. Here, we use Chromatag to evaluate five chromatin modifications, at three life stages in both sexes. We find substantial changes in chromatin modification profiles across development and fewer differences between males and females. Additionally, we find chromatin modifications that persist in different sets of genes from pupal to adult stages, which may point to genes important for cell fate determination in fru P1 neurons. We generated cell-type-specific RNA-seq data sets, using translating ribosome affinity purification (TRAP). We identify actively translated genes in fru P1 neurons, revealing novel stage- and sex-differences in gene expression. We also find chromatin modification enrichment patterns that are associated with gene expression. Next, we use the chromatin modification data to identify cell-type-specific super-enhancer-containing genes. We show that genes with super-enhancers in fru P1 neurons differ across development and between the sexes. We validated that a set of genes are expressed in fru P1 neurons, which were chosen based on having a super-enhancer and TRAP-enriched expression in fru P1 neurons.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009240</identifier><identifier>PMID: 33901168</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adults ; Anatomy ; Animal reproduction ; Behavior ; Biology and Life Sciences ; Chromatin ; Developmental stages ; Drosophila ; Eclosion ; Females ; Gender differences ; Gene expression ; Genetic aspects ; Genomes ; Histone H3 ; Histones ; Insects ; Males ; Metamorphosis ; Morphology ; Nervous system ; Neural circuitry ; Neurons ; Observations ; Physiological aspects ; Reproductive behavior ; Research and analysis methods ; Sex differences ; Sexes ; Social Sciences ; Transcription activation ; Transcription factors</subject><ispartof>PLoS genetics, 2021-04, Vol.17 (4), p.e1009240-e1009240</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Palmateer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Palmateer et al 2021 Palmateer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-1e94ee8d5539090b8827c24a31c54ad430066532ff6bb292a42880c9412f06ce3</citedby><cites>FETCH-LOGICAL-c726t-1e94ee8d5539090b8827c24a31c54ad430066532ff6bb292a42880c9412f06ce3</cites><orcidid>0000-0001-5255-8688 ; 0000-0002-7254-0829 ; 0000-0002-2437-4352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2528225443/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2528225443?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33901168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schoofs, Liliane</contributor><creatorcontrib>Palmateer, Colleen M</creatorcontrib><creatorcontrib>Moseley, Shawn C</creatorcontrib><creatorcontrib>Ray, Surjyendu</creatorcontrib><creatorcontrib>Brovero, Savannah G</creatorcontrib><creatorcontrib>Arbeitman, Michelle N</creatorcontrib><title>Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sexes. We developed a method to purify cell-type-specific chromatin (Chromatag), using a tagged histone H2B variant that is expressed using the versatile Gal4/UAS gene expression system. Here, we use Chromatag to evaluate five chromatin modifications, at three life stages in both sexes. We find substantial changes in chromatin modification profiles across development and fewer differences between males and females. Additionally, we find chromatin modifications that persist in different sets of genes from pupal to adult stages, which may point to genes important for cell fate determination in fru P1 neurons. We generated cell-type-specific RNA-seq data sets, using translating ribosome affinity purification (TRAP). We identify actively translated genes in fru P1 neurons, revealing novel stage- and sex-differences in gene expression. We also find chromatin modification enrichment patterns that are associated with gene expression. Next, we use the chromatin modification data to identify cell-type-specific super-enhancer-containing genes. We show that genes with super-enhancers in fru P1 neurons differ across development and between the sexes. We validated that a set of genes are expressed in fru P1 neurons, which were chosen based on having a super-enhancer and TRAP-enriched expression in fru P1 neurons.</description><subject>Adults</subject><subject>Anatomy</subject><subject>Animal reproduction</subject><subject>Behavior</subject><subject>Biology and Life Sciences</subject><subject>Chromatin</subject><subject>Developmental stages</subject><subject>Drosophila</subject><subject>Eclosion</subject><subject>Females</subject><subject>Gender differences</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Insects</subject><subject>Males</subject><subject>Metamorphosis</subject><subject>Morphology</subject><subject>Nervous system</subject><subject>Neural circuitry</subject><subject>Neurons</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Reproductive behavior</subject><subject>Research and analysis methods</subject><subject>Sex differences</subject><subject>Sexes</subject><subject>Social Sciences</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUx4so7jr6DUQDguhDxyRN2_RFGNbbwOKCt9eQpqfTLJ2mm6TDzquf3HSnu0xlH5Q-NJz8zv_k3KLoOcFLkuTk3aUZbCfbZb-BbkkwLijDD6JTkqZJnDPMHh6dT6Inzl1inKS8yB9HJ0lSYEIyfhr9XgWNvdMOmRopaNvY73uIXQ9K11oh1VizlV53aGuq0RLOpnNIdhUKgQHBdW_BuWBEAfpgjTN9o1uJOhjsSPpGelRpC8ojC7011aC83gEqoZE7bezT6FEtWwfPpv8i-vnp44-zL_H5xef12eo8VjnNfEygYAC8CjkVuMAl5zRXlMmEqJTJiiUYZ1ma0LrOypIWVDLKOVYFI7TGmYJkEb086PatcWIqnxM0pZzSlLEkEOsDURl5KXqrt9LuhZFa3BiM3QhpvVYtiErRMktZSWgSXHPMOeQ8PI4QDFVdqKD1foo2lFuoFHTeynYmOr_pdCM2Zic4wRQH2UX0ZhKw5moA58VWu7FDsgMzjO8moZk4J1lAX_2F3p_dRG1kSEB3tQlx1SgqVlmGszA_oX6LaHkPFb4KtlqZDmod7DOHtzOHwHi49hs5OCfW37_9B_v139mLX3P29RHbgGx940w73MzqHGQHUIVBdRbqu4YQLMa1uq2cGNdKTGsV3F4cN_PO6XaPkj_eaB0C</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Palmateer, Colleen M</creator><creator>Moseley, Shawn C</creator><creator>Ray, Surjyendu</creator><creator>Brovero, Savannah G</creator><creator>Arbeitman, Michelle N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5255-8688</orcidid><orcidid>https://orcid.org/0000-0002-7254-0829</orcidid><orcidid>https://orcid.org/0000-0002-2437-4352</orcidid></search><sort><creationdate>20210426</creationdate><title>Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior</title><author>Palmateer, Colleen M ; Moseley, Shawn C ; Ray, Surjyendu ; Brovero, Savannah G ; Arbeitman, Michelle N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-1e94ee8d5539090b8827c24a31c54ad430066532ff6bb292a42880c9412f06ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adults</topic><topic>Anatomy</topic><topic>Animal reproduction</topic><topic>Behavior</topic><topic>Biology and Life Sciences</topic><topic>Chromatin</topic><topic>Developmental stages</topic><topic>Drosophila</topic><topic>Eclosion</topic><topic>Females</topic><topic>Gender differences</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Insects</topic><topic>Males</topic><topic>Metamorphosis</topic><topic>Morphology</topic><topic>Nervous system</topic><topic>Neural circuitry</topic><topic>Neurons</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Reproductive behavior</topic><topic>Research and analysis methods</topic><topic>Sex differences</topic><topic>Sexes</topic><topic>Social Sciences</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmateer, Colleen M</creatorcontrib><creatorcontrib>Moseley, Shawn C</creatorcontrib><creatorcontrib>Ray, Surjyendu</creatorcontrib><creatorcontrib>Brovero, Savannah G</creatorcontrib><creatorcontrib>Arbeitman, Michelle N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmateer, Colleen M</au><au>Moseley, Shawn C</au><au>Ray, Surjyendu</au><au>Brovero, Savannah G</au><au>Arbeitman, Michelle N</au><au>Schoofs, Liliane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-04-26</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>e1009240</spage><epage>e1009240</epage><pages>e1009240-e1009240</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Examining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sexes. We developed a method to purify cell-type-specific chromatin (Chromatag), using a tagged histone H2B variant that is expressed using the versatile Gal4/UAS gene expression system. Here, we use Chromatag to evaluate five chromatin modifications, at three life stages in both sexes. We find substantial changes in chromatin modification profiles across development and fewer differences between males and females. Additionally, we find chromatin modifications that persist in different sets of genes from pupal to adult stages, which may point to genes important for cell fate determination in fru P1 neurons. We generated cell-type-specific RNA-seq data sets, using translating ribosome affinity purification (TRAP). We identify actively translated genes in fru P1 neurons, revealing novel stage- and sex-differences in gene expression. We also find chromatin modification enrichment patterns that are associated with gene expression. Next, we use the chromatin modification data to identify cell-type-specific super-enhancer-containing genes. We show that genes with super-enhancers in fru P1 neurons differ across development and between the sexes. We validated that a set of genes are expressed in fru P1 neurons, which were chosen based on having a super-enhancer and TRAP-enriched expression in fru P1 neurons.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33901168</pmid><doi>10.1371/journal.pgen.1009240</doi><orcidid>https://orcid.org/0000-0001-5255-8688</orcidid><orcidid>https://orcid.org/0000-0002-7254-0829</orcidid><orcidid>https://orcid.org/0000-0002-2437-4352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2021-04, Vol.17 (4), p.e1009240-e1009240
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2528225443
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adults
Anatomy
Animal reproduction
Behavior
Biology and Life Sciences
Chromatin
Developmental stages
Drosophila
Eclosion
Females
Gender differences
Gene expression
Genetic aspects
Genomes
Histone H3
Histones
Insects
Males
Metamorphosis
Morphology
Nervous system
Neural circuitry
Neurons
Observations
Physiological aspects
Reproductive behavior
Research and analysis methods
Sex differences
Sexes
Social Sciences
Transcription activation
Transcription factors
title Analysis of cell-type-specific chromatin modifications and gene expression in Drosophila neurons that direct reproductive behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20cell-type-specific%20chromatin%20modifications%20and%20gene%20expression%20in%20Drosophila%20neurons%20that%20direct%20reproductive%20behavior&rft.jtitle=PLoS%20genetics&rft.au=Palmateer,%20Colleen%20M&rft.date=2021-04-26&rft.volume=17&rft.issue=4&rft.spage=e1009240&rft.epage=e1009240&rft.pages=e1009240-e1009240&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009240&rft_dat=%3Cgale_plos_%3EA660624065%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-1e94ee8d5539090b8827c24a31c54ad430066532ff6bb292a42880c9412f06ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528225443&rft_id=info:pmid/33901168&rft_galeid=A660624065&rfr_iscdi=true