Loading…
Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases
The WHO announced the epidemic of SARS-CoV2 as a public health emergency of international concern on 30th January 2020. To date, it has spread to more than 200 countries and has been declared a global pandemic. For appropriate preparedness, containment, and mitigation response, the stakeholders and...
Saved in:
Published in: | PloS one 2021-05, Vol.16 (5), p.e0252147-e0252147 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c599t-44e35bc144a9271a3b4c59b97d01121ea775428dec8b0816a7fb95bcbde477e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c599t-44e35bc144a9271a3b4c59b97d01121ea775428dec8b0816a7fb95bcbde477e43 |
container_end_page | e0252147 |
container_issue | 5 |
container_start_page | e0252147 |
container_title | PloS one |
container_volume | 16 |
creator | Ahmad, Ghufran Ahmed, Furqan Rizwan, Muhammad Suhail Muhammad, Javed Fatima, Syeda Hira Ikram, Aamer Zeeb, Hajo |
description | The WHO announced the epidemic of SARS-CoV2 as a public health emergency of international concern on 30th January 2020. To date, it has spread to more than 200 countries and has been declared a global pandemic. For appropriate preparedness, containment, and mitigation response, the stakeholders and policymakers require prior guidance on the propagation of SARS-CoV2. This study aims to provide such guidance by forecasting the cumulative COVID-19 cases up to 4 weeks ahead for 187 countries, using four data-driven methodologies; autoregressive integrated moving average (ARIMA), exponential smoothing model (ETS), and random walk forecasts (RWF) with and without drift. For these forecasts, we evaluate the accuracy and systematic errors using the Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), respectively. The results show that the ARIMA and ETS methods outperform the other two forecasting methods. Additionally, using these forecasts, we generate heat maps to provide a pictorial representation of the countries at risk of having an increase in the cases in the coming 4 weeks of February 2021. Due to limited data availability during the ongoing pandemic, less data-hungry short-term forecasting models, like ARIMA and ETS, can help in anticipating the future outbreaks of SARS-CoV2. |
doi_str_mv | 10.1371/journal.pone.0252147 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2530362667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662543309</galeid><doaj_id>oai_doaj_org_article_d77f988d97444ee2ae7eac0a836e2914</doaj_id><sourcerecordid>A662543309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-44e35bc144a9271a3b4c59b97d01121ea775428dec8b0816a7fb95bcbde477e43</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6DwQLguhFx3y1aW4WhmHVgYWFHXdvQ5qeznRImzFJB_33pjtVtrIXkosk5zznPR-cJHmL0QJTjj_v7eB6ZRYH28MCkZxgxp8l51hQkhUE0eeP3mfJK-_3COW0LIqXyRllCIu8xOfJ3dVRmUGFtt-mtQoqq117hD7tIOxs7dPGutTvrAtZANeNX9DKB5_aJtVDN5gYeoR0s7zdZCt7T9LoBf86edEo4-HNdF8kd1-uvq--Zdc3X9er5XWmcyFCxhjQvNKYMSUIx4pWLDoqwWuEMcGgOM8ZKWvQZYVKXCjeVCIGVDUwzoHRi-TdSfdgrJfTRLwkOUW0IEXBI7E-EbVVe3lwbafcL2lVKx8M1m2lcqHVBmTNeSPKshacxcKAKOCgNFIlLYAIPGa7nLINVQe1hj44ZWaic0_f7uTWHmWJqcjRKPBxEnD2xwA-yK71GoxRPdjhoe7YdoHYiL7_B326u4naqthA2zc25tWjqFwWBckZpUhEavEEFU8NXavj-jRttM8CPs0CIhPgZ9iqwXu53tz-P3tzP2c_PGJ3oEzYeWuG0Nrez0F2ArWz3jto_g4ZIzlu_59pyHH75bT99DfBA_R2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530362667</pqid></control><display><type>article</type><title>Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Ahmad, Ghufran ; Ahmed, Furqan ; Rizwan, Muhammad Suhail ; Muhammad, Javed ; Fatima, Syeda Hira ; Ikram, Aamer ; Zeeb, Hajo</creator><creatorcontrib>Ahmad, Ghufran ; Ahmed, Furqan ; Rizwan, Muhammad Suhail ; Muhammad, Javed ; Fatima, Syeda Hira ; Ikram, Aamer ; Zeeb, Hajo</creatorcontrib><description>The WHO announced the epidemic of SARS-CoV2 as a public health emergency of international concern on 30th January 2020. To date, it has spread to more than 200 countries and has been declared a global pandemic. For appropriate preparedness, containment, and mitigation response, the stakeholders and policymakers require prior guidance on the propagation of SARS-CoV2. This study aims to provide such guidance by forecasting the cumulative COVID-19 cases up to 4 weeks ahead for 187 countries, using four data-driven methodologies; autoregressive integrated moving average (ARIMA), exponential smoothing model (ETS), and random walk forecasts (RWF) with and without drift. For these forecasts, we evaluate the accuracy and systematic errors using the Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), respectively. The results show that the ARIMA and ETS methods outperform the other two forecasting methods. Additionally, using these forecasts, we generate heat maps to provide a pictorial representation of the countries at risk of having an increase in the cases in the coming 4 weeks of February 2021. Due to limited data availability during the ongoing pandemic, less data-hungry short-term forecasting models, like ARIMA and ETS, can help in anticipating the future outbreaks of SARS-CoV2.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0252147</identifier><identifier>PMID: 34019581</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Accuracy ; Biology and Life Sciences ; Coronaviruses ; COVID-19 ; COVID-19 vaccines ; Data collection ; Disease control ; Disease prevention ; Disease transmission ; Editing ; Epidemics ; Epidemiology ; Financing ; Forecast accuracy ; Forecasting ; Health sciences ; Medical research ; Medicine and Health Sciences ; Methods ; Microbiology ; Performance evaluation ; Physical Sciences ; Prevention ; Public health ; Research and Analysis Methods ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Signs and symptoms ; Technology ; Test sets ; Time series ; Training ; Viral diseases ; Viruses</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0252147-e0252147</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ahmad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ahmad et al 2021 Ahmad et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-44e35bc144a9271a3b4c59b97d01121ea775428dec8b0816a7fb95bcbde477e43</citedby><cites>FETCH-LOGICAL-c599t-44e35bc144a9271a3b4c59b97d01121ea775428dec8b0816a7fb95bcbde477e43</cites><orcidid>0000-0002-2454-9335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2530362667/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2530362667?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768,74155,74869</link.rule.ids></links><search><creatorcontrib>Ahmad, Ghufran</creatorcontrib><creatorcontrib>Ahmed, Furqan</creatorcontrib><creatorcontrib>Rizwan, Muhammad Suhail</creatorcontrib><creatorcontrib>Muhammad, Javed</creatorcontrib><creatorcontrib>Fatima, Syeda Hira</creatorcontrib><creatorcontrib>Ikram, Aamer</creatorcontrib><creatorcontrib>Zeeb, Hajo</creatorcontrib><title>Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases</title><title>PloS one</title><description>The WHO announced the epidemic of SARS-CoV2 as a public health emergency of international concern on 30th January 2020. To date, it has spread to more than 200 countries and has been declared a global pandemic. For appropriate preparedness, containment, and mitigation response, the stakeholders and policymakers require prior guidance on the propagation of SARS-CoV2. This study aims to provide such guidance by forecasting the cumulative COVID-19 cases up to 4 weeks ahead for 187 countries, using four data-driven methodologies; autoregressive integrated moving average (ARIMA), exponential smoothing model (ETS), and random walk forecasts (RWF) with and without drift. For these forecasts, we evaluate the accuracy and systematic errors using the Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), respectively. The results show that the ARIMA and ETS methods outperform the other two forecasting methods. Additionally, using these forecasts, we generate heat maps to provide a pictorial representation of the countries at risk of having an increase in the cases in the coming 4 weeks of February 2021. Due to limited data availability during the ongoing pandemic, less data-hungry short-term forecasting models, like ARIMA and ETS, can help in anticipating the future outbreaks of SARS-CoV2.</description><subject>Accuracy</subject><subject>Biology and Life Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Data collection</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease transmission</subject><subject>Editing</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Financing</subject><subject>Forecast accuracy</subject><subject>Forecasting</subject><subject>Health sciences</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Prevention</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Signs and symptoms</subject><subject>Technology</subject><subject>Test sets</subject><subject>Time series</subject><subject>Training</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6DwQLguhFx3y1aW4WhmHVgYWFHXdvQ5qeznRImzFJB_33pjtVtrIXkosk5zznPR-cJHmL0QJTjj_v7eB6ZRYH28MCkZxgxp8l51hQkhUE0eeP3mfJK-_3COW0LIqXyRllCIu8xOfJ3dVRmUGFtt-mtQoqq117hD7tIOxs7dPGutTvrAtZANeNX9DKB5_aJtVDN5gYeoR0s7zdZCt7T9LoBf86edEo4-HNdF8kd1-uvq--Zdc3X9er5XWmcyFCxhjQvNKYMSUIx4pWLDoqwWuEMcGgOM8ZKWvQZYVKXCjeVCIGVDUwzoHRi-TdSfdgrJfTRLwkOUW0IEXBI7E-EbVVe3lwbafcL2lVKx8M1m2lcqHVBmTNeSPKshacxcKAKOCgNFIlLYAIPGa7nLINVQe1hj44ZWaic0_f7uTWHmWJqcjRKPBxEnD2xwA-yK71GoxRPdjhoe7YdoHYiL7_B326u4naqthA2zc25tWjqFwWBckZpUhEavEEFU8NXavj-jRttM8CPs0CIhPgZ9iqwXu53tz-P3tzP2c_PGJ3oEzYeWuG0Nrez0F2ArWz3jto_g4ZIzlu_59pyHH75bT99DfBA_R2</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>Ahmad, Ghufran</creator><creator>Ahmed, Furqan</creator><creator>Rizwan, Muhammad Suhail</creator><creator>Muhammad, Javed</creator><creator>Fatima, Syeda Hira</creator><creator>Ikram, Aamer</creator><creator>Zeeb, Hajo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2454-9335</orcidid></search><sort><creationdate>20210521</creationdate><title>Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases</title><author>Ahmad, Ghufran ; Ahmed, Furqan ; Rizwan, Muhammad Suhail ; Muhammad, Javed ; Fatima, Syeda Hira ; Ikram, Aamer ; Zeeb, Hajo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-44e35bc144a9271a3b4c59b97d01121ea775428dec8b0816a7fb95bcbde477e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Biology and Life Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Data collection</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease transmission</topic><topic>Editing</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Financing</topic><topic>Forecast accuracy</topic><topic>Forecasting</topic><topic>Health sciences</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Prevention</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Signs and symptoms</topic><topic>Technology</topic><topic>Test sets</topic><topic>Time series</topic><topic>Training</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Ghufran</creatorcontrib><creatorcontrib>Ahmed, Furqan</creatorcontrib><creatorcontrib>Rizwan, Muhammad Suhail</creatorcontrib><creatorcontrib>Muhammad, Javed</creatorcontrib><creatorcontrib>Fatima, Syeda Hira</creatorcontrib><creatorcontrib>Ikram, Aamer</creatorcontrib><creatorcontrib>Zeeb, Hajo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Ghufran</au><au>Ahmed, Furqan</au><au>Rizwan, Muhammad Suhail</au><au>Muhammad, Javed</au><au>Fatima, Syeda Hira</au><au>Ikram, Aamer</au><au>Zeeb, Hajo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases</atitle><jtitle>PloS one</jtitle><date>2021-05-21</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0252147</spage><epage>e0252147</epage><pages>e0252147-e0252147</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The WHO announced the epidemic of SARS-CoV2 as a public health emergency of international concern on 30th January 2020. To date, it has spread to more than 200 countries and has been declared a global pandemic. For appropriate preparedness, containment, and mitigation response, the stakeholders and policymakers require prior guidance on the propagation of SARS-CoV2. This study aims to provide such guidance by forecasting the cumulative COVID-19 cases up to 4 weeks ahead for 187 countries, using four data-driven methodologies; autoregressive integrated moving average (ARIMA), exponential smoothing model (ETS), and random walk forecasts (RWF) with and without drift. For these forecasts, we evaluate the accuracy and systematic errors using the Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), respectively. The results show that the ARIMA and ETS methods outperform the other two forecasting methods. Additionally, using these forecasts, we generate heat maps to provide a pictorial representation of the countries at risk of having an increase in the cases in the coming 4 weeks of February 2021. Due to limited data availability during the ongoing pandemic, less data-hungry short-term forecasting models, like ARIMA and ETS, can help in anticipating the future outbreaks of SARS-CoV2.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34019581</pmid><doi>10.1371/journal.pone.0252147</doi><tpages>e0252147</tpages><orcidid>https://orcid.org/0000-0002-2454-9335</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0252147-e0252147 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2530362667 |
source | PubMed (Medline); Publicly Available Content Database; Coronavirus Research Database |
subjects | Accuracy Biology and Life Sciences Coronaviruses COVID-19 COVID-19 vaccines Data collection Disease control Disease prevention Disease transmission Editing Epidemics Epidemiology Financing Forecast accuracy Forecasting Health sciences Medical research Medicine and Health Sciences Methods Microbiology Performance evaluation Physical Sciences Prevention Public health Research and Analysis Methods Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Signs and symptoms Technology Test sets Time series Training Viral diseases Viruses |
title | Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20data-driven%20methods%20for%20short-term%20forecasts%20of%20cumulative%20SARS-CoV2%20cases&rft.jtitle=PloS%20one&rft.au=Ahmad,%20Ghufran&rft.date=2021-05-21&rft.volume=16&rft.issue=5&rft.spage=e0252147&rft.epage=e0252147&rft.pages=e0252147-e0252147&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0252147&rft_dat=%3Cgale_plos_%3EA662543309%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c599t-44e35bc144a9271a3b4c59b97d01121ea775428dec8b0816a7fb95bcbde477e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530362667&rft_id=info:pmid/34019581&rft_galeid=A662543309&rfr_iscdi=true |