Loading…

Signaling through polymerization and degradation: Analysis and simulations of T cell activation mediated by Bcl10

The adaptive immune system serves as a potent and highly specific defense mechanism against pathogen infection. One component of this system, the effector T cell, facilitates pathogen clearance upon detection of specific antigens by the T cell receptor (TCR). A critical process in effector T cell ac...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2021-05, Vol.17 (5), p.e1007986-e1007986
Main Authors: Campanello, Leonard, Traver, Maria K, Shroff, Hari, Schaefer, Brian C, Losert, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-3c870395b4d836e8c69ea50f9b27da3b92b202ad539ae142ddf51cd940ac31ce3
cites cdi_FETCH-LOGICAL-c591t-3c870395b4d836e8c69ea50f9b27da3b92b202ad539ae142ddf51cd940ac31ce3
container_end_page e1007986
container_issue 5
container_start_page e1007986
container_title PLoS computational biology
container_volume 17
creator Campanello, Leonard
Traver, Maria K
Shroff, Hari
Schaefer, Brian C
Losert, Wolfgang
description The adaptive immune system serves as a potent and highly specific defense mechanism against pathogen infection. One component of this system, the effector T cell, facilitates pathogen clearance upon detection of specific antigens by the T cell receptor (TCR). A critical process in effector T cell activation is transmission of signals from the TCR to a key transcriptional regulator, NF-κB. The transmission of this signal involves a highly dynamic process in which helical filaments of Bcl10, a key protein constituent of the TCR signaling cascade, undergo competing processes of polymeric assembly and macroautophagy-dependent degradation. Through computational analysis of three-dimensional, super-resolution optical micrographs, we quantitatively characterize TCR-stimulated Bcl10 filament assembly and length dynamics, and demonstrate that filaments become shorter over time. Additionally, we develop an image-based, bootstrap-like resampling method that demonstrates the preferred association between autophagosomes and both Bcl10-filament ends and punctate-Bcl10 structures, implying that autophagosome-driven macroautophagy is directly responsible for Bcl10 filament shortening. We probe Bcl10 polymerization-depolymerization dynamics with a stochastic Monte-Carlo simulation of nucleation-limited filament assembly and degradation, and we show that high probabilities of filament nucleation in response to TCR engagement could provide the observed robust, homogeneous, and tunable response dynamic. Furthermore, we demonstrate that the speed of filament disassembly preferentially at filament ends provides effective regulatory control. Taken together, these data suggest that Bcl10 filament growth and degradation act as an excitable system that provides a digital response mechanism and the reliable timing critical for T cell activation and regulatory processes.
doi_str_mv 10.1371/journal.pcbi.1007986
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2541866513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665274342</galeid><doaj_id>oai_doaj_org_article_410e6f8f72684783986f3c0b857dcfc2</doaj_id><sourcerecordid>A665274342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-3c870395b4d836e8c69ea50f9b27da3b92b202ad539ae142ddf51cd940ac31ce3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGezYiW0WSEPFY6QKJFrWluNHxqMkntpJxfDrcWbSqkHdoCzi-H7n2PfkZtlLBJcIU_R-64fQyWa5U5VbIggpZ-Wj7BQVBV5QXLDH99Yn2bMYtxCmJS-fZieYQEQ4oqfZ9aWrk4vratBvgh_qDdj5Zt-a4P7I3vkOyE4Dbeog9eH7A1glfh9dPFSia4fmUIjAW3AFlGkaIFXvbo7y1mgne6NBtQefVIPg8-yJlU00L6b3Wfbry-er82-Lix9f1-eri4UqOOoXWDEKMS8qohkuDVMlN7KAllc51RJXPK9ymEtdYC4NIrnWtkBKcwKlwkgZfJa9PvruGh_FlFYUeUEQK8sC4USsj4T2cit2wbUy7IWXThw2fKiFDL1TjREEQVNaZmleMkIZTllbrGDFCqqVVXny-jidNlSpZWW6PshmZjqvdG4jan8jGGIk_bxk8HYyCP56MLEXrYtjmLIzfhjvjVGOEeUwoW_-QR_ubqJqmRpwnfXpXDWailUickowGe-9fIBKjzatU74z1qX9meDdTJCY3vzuaznEKNaXP_-D_T5nyZFVwccYjL3LDkExDvxtk2IceDENfJK9up_7neh2wvFfvS38Nw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541866513</pqid></control><display><type>article</type><title>Signaling through polymerization and degradation: Analysis and simulations of T cell activation mediated by Bcl10</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Campanello, Leonard ; Traver, Maria K ; Shroff, Hari ; Schaefer, Brian C ; Losert, Wolfgang</creator><contributor>Meier-Schellersheim, Martin</contributor><creatorcontrib>Campanello, Leonard ; Traver, Maria K ; Shroff, Hari ; Schaefer, Brian C ; Losert, Wolfgang ; Meier-Schellersheim, Martin</creatorcontrib><description>The adaptive immune system serves as a potent and highly specific defense mechanism against pathogen infection. One component of this system, the effector T cell, facilitates pathogen clearance upon detection of specific antigens by the T cell receptor (TCR). A critical process in effector T cell activation is transmission of signals from the TCR to a key transcriptional regulator, NF-κB. The transmission of this signal involves a highly dynamic process in which helical filaments of Bcl10, a key protein constituent of the TCR signaling cascade, undergo competing processes of polymeric assembly and macroautophagy-dependent degradation. Through computational analysis of three-dimensional, super-resolution optical micrographs, we quantitatively characterize TCR-stimulated Bcl10 filament assembly and length dynamics, and demonstrate that filaments become shorter over time. Additionally, we develop an image-based, bootstrap-like resampling method that demonstrates the preferred association between autophagosomes and both Bcl10-filament ends and punctate-Bcl10 structures, implying that autophagosome-driven macroautophagy is directly responsible for Bcl10 filament shortening. We probe Bcl10 polymerization-depolymerization dynamics with a stochastic Monte-Carlo simulation of nucleation-limited filament assembly and degradation, and we show that high probabilities of filament nucleation in response to TCR engagement could provide the observed robust, homogeneous, and tunable response dynamic. Furthermore, we demonstrate that the speed of filament disassembly preferentially at filament ends provides effective regulatory control. Taken together, these data suggest that Bcl10 filament growth and degradation act as an excitable system that provides a digital response mechanism and the reliable timing critical for T cell activation and regulatory processes.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007986</identifier><identifier>PMID: 34014917</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive immunity ; Analysis ; Antigens ; Autoimmune diseases ; Autophagy ; Bcl-10 protein ; Biology and Life Sciences ; Cell activation ; Cell death ; Damage prevention ; Decomposition (Chemistry) ; Filaments ; Homeostasis ; Identification and classification ; Immune response ; Immunodeficiency ; Kinases ; Lymphocytes ; Lymphocytes T ; Medicine and Health Sciences ; Methods ; Monte Carlo method ; NF-κB protein ; Pathogens ; Physical Sciences ; Polymerization ; Polymers ; Primary immunodeficiencies ; Proteins ; Research and analysis methods ; Shutdowns ; Signaling ; T cell receptors ; T cells ; T-cell receptor</subject><ispartof>PLoS computational biology, 2021-05, Vol.17 (5), p.e1007986-e1007986</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-3c870395b4d836e8c69ea50f9b27da3b92b202ad539ae142ddf51cd940ac31ce3</citedby><cites>FETCH-LOGICAL-c591t-3c870395b4d836e8c69ea50f9b27da3b92b202ad539ae142ddf51cd940ac31ce3</cites><orcidid>0000-0001-8877-3507 ; 0000-0001-8267-4161 ; 0000-0002-1167-2369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2541866513/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2541866513?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34014917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Meier-Schellersheim, Martin</contributor><creatorcontrib>Campanello, Leonard</creatorcontrib><creatorcontrib>Traver, Maria K</creatorcontrib><creatorcontrib>Shroff, Hari</creatorcontrib><creatorcontrib>Schaefer, Brian C</creatorcontrib><creatorcontrib>Losert, Wolfgang</creatorcontrib><title>Signaling through polymerization and degradation: Analysis and simulations of T cell activation mediated by Bcl10</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The adaptive immune system serves as a potent and highly specific defense mechanism against pathogen infection. One component of this system, the effector T cell, facilitates pathogen clearance upon detection of specific antigens by the T cell receptor (TCR). A critical process in effector T cell activation is transmission of signals from the TCR to a key transcriptional regulator, NF-κB. The transmission of this signal involves a highly dynamic process in which helical filaments of Bcl10, a key protein constituent of the TCR signaling cascade, undergo competing processes of polymeric assembly and macroautophagy-dependent degradation. Through computational analysis of three-dimensional, super-resolution optical micrographs, we quantitatively characterize TCR-stimulated Bcl10 filament assembly and length dynamics, and demonstrate that filaments become shorter over time. Additionally, we develop an image-based, bootstrap-like resampling method that demonstrates the preferred association between autophagosomes and both Bcl10-filament ends and punctate-Bcl10 structures, implying that autophagosome-driven macroautophagy is directly responsible for Bcl10 filament shortening. We probe Bcl10 polymerization-depolymerization dynamics with a stochastic Monte-Carlo simulation of nucleation-limited filament assembly and degradation, and we show that high probabilities of filament nucleation in response to TCR engagement could provide the observed robust, homogeneous, and tunable response dynamic. Furthermore, we demonstrate that the speed of filament disassembly preferentially at filament ends provides effective regulatory control. Taken together, these data suggest that Bcl10 filament growth and degradation act as an excitable system that provides a digital response mechanism and the reliable timing critical for T cell activation and regulatory processes.</description><subject>Adaptive immunity</subject><subject>Analysis</subject><subject>Antigens</subject><subject>Autoimmune diseases</subject><subject>Autophagy</subject><subject>Bcl-10 protein</subject><subject>Biology and Life Sciences</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Damage prevention</subject><subject>Decomposition (Chemistry)</subject><subject>Filaments</subject><subject>Homeostasis</subject><subject>Identification and classification</subject><subject>Immune response</subject><subject>Immunodeficiency</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>NF-κB protein</subject><subject>Pathogens</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Primary immunodeficiencies</subject><subject>Proteins</subject><subject>Research and analysis methods</subject><subject>Shutdowns</subject><subject>Signaling</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-cell receptor</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGezYiW0WSEPFY6QKJFrWluNHxqMkntpJxfDrcWbSqkHdoCzi-H7n2PfkZtlLBJcIU_R-64fQyWa5U5VbIggpZ-Wj7BQVBV5QXLDH99Yn2bMYtxCmJS-fZieYQEQ4oqfZ9aWrk4vratBvgh_qDdj5Zt-a4P7I3vkOyE4Dbeog9eH7A1glfh9dPFSia4fmUIjAW3AFlGkaIFXvbo7y1mgne6NBtQefVIPg8-yJlU00L6b3Wfbry-er82-Lix9f1-eri4UqOOoXWDEKMS8qohkuDVMlN7KAllc51RJXPK9ymEtdYC4NIrnWtkBKcwKlwkgZfJa9PvruGh_FlFYUeUEQK8sC4USsj4T2cit2wbUy7IWXThw2fKiFDL1TjREEQVNaZmleMkIZTllbrGDFCqqVVXny-jidNlSpZWW6PshmZjqvdG4jan8jGGIk_bxk8HYyCP56MLEXrYtjmLIzfhjvjVGOEeUwoW_-QR_ubqJqmRpwnfXpXDWailUickowGe-9fIBKjzatU74z1qX9meDdTJCY3vzuaznEKNaXP_-D_T5nyZFVwccYjL3LDkExDvxtk2IceDENfJK9up_7neh2wvFfvS38Nw</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Campanello, Leonard</creator><creator>Traver, Maria K</creator><creator>Shroff, Hari</creator><creator>Schaefer, Brian C</creator><creator>Losert, Wolfgang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8877-3507</orcidid><orcidid>https://orcid.org/0000-0001-8267-4161</orcidid><orcidid>https://orcid.org/0000-0002-1167-2369</orcidid></search><sort><creationdate>20210520</creationdate><title>Signaling through polymerization and degradation: Analysis and simulations of T cell activation mediated by Bcl10</title><author>Campanello, Leonard ; Traver, Maria K ; Shroff, Hari ; Schaefer, Brian C ; Losert, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-3c870395b4d836e8c69ea50f9b27da3b92b202ad539ae142ddf51cd940ac31ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive immunity</topic><topic>Analysis</topic><topic>Antigens</topic><topic>Autoimmune diseases</topic><topic>Autophagy</topic><topic>Bcl-10 protein</topic><topic>Biology and Life Sciences</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Damage prevention</topic><topic>Decomposition (Chemistry)</topic><topic>Filaments</topic><topic>Homeostasis</topic><topic>Identification and classification</topic><topic>Immune response</topic><topic>Immunodeficiency</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>NF-κB protein</topic><topic>Pathogens</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Primary immunodeficiencies</topic><topic>Proteins</topic><topic>Research and analysis methods</topic><topic>Shutdowns</topic><topic>Signaling</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-cell receptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campanello, Leonard</creatorcontrib><creatorcontrib>Traver, Maria K</creatorcontrib><creatorcontrib>Shroff, Hari</creatorcontrib><creatorcontrib>Schaefer, Brian C</creatorcontrib><creatorcontrib>Losert, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campanello, Leonard</au><au>Traver, Maria K</au><au>Shroff, Hari</au><au>Schaefer, Brian C</au><au>Losert, Wolfgang</au><au>Meier-Schellersheim, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signaling through polymerization and degradation: Analysis and simulations of T cell activation mediated by Bcl10</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>e1007986</spage><epage>e1007986</epage><pages>e1007986-e1007986</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The adaptive immune system serves as a potent and highly specific defense mechanism against pathogen infection. One component of this system, the effector T cell, facilitates pathogen clearance upon detection of specific antigens by the T cell receptor (TCR). A critical process in effector T cell activation is transmission of signals from the TCR to a key transcriptional regulator, NF-κB. The transmission of this signal involves a highly dynamic process in which helical filaments of Bcl10, a key protein constituent of the TCR signaling cascade, undergo competing processes of polymeric assembly and macroautophagy-dependent degradation. Through computational analysis of three-dimensional, super-resolution optical micrographs, we quantitatively characterize TCR-stimulated Bcl10 filament assembly and length dynamics, and demonstrate that filaments become shorter over time. Additionally, we develop an image-based, bootstrap-like resampling method that demonstrates the preferred association between autophagosomes and both Bcl10-filament ends and punctate-Bcl10 structures, implying that autophagosome-driven macroautophagy is directly responsible for Bcl10 filament shortening. We probe Bcl10 polymerization-depolymerization dynamics with a stochastic Monte-Carlo simulation of nucleation-limited filament assembly and degradation, and we show that high probabilities of filament nucleation in response to TCR engagement could provide the observed robust, homogeneous, and tunable response dynamic. Furthermore, we demonstrate that the speed of filament disassembly preferentially at filament ends provides effective regulatory control. Taken together, these data suggest that Bcl10 filament growth and degradation act as an excitable system that provides a digital response mechanism and the reliable timing critical for T cell activation and regulatory processes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34014917</pmid><doi>10.1371/journal.pcbi.1007986</doi><orcidid>https://orcid.org/0000-0001-8877-3507</orcidid><orcidid>https://orcid.org/0000-0001-8267-4161</orcidid><orcidid>https://orcid.org/0000-0002-1167-2369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-05, Vol.17 (5), p.e1007986-e1007986
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2541866513
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adaptive immunity
Analysis
Antigens
Autoimmune diseases
Autophagy
Bcl-10 protein
Biology and Life Sciences
Cell activation
Cell death
Damage prevention
Decomposition (Chemistry)
Filaments
Homeostasis
Identification and classification
Immune response
Immunodeficiency
Kinases
Lymphocytes
Lymphocytes T
Medicine and Health Sciences
Methods
Monte Carlo method
NF-κB protein
Pathogens
Physical Sciences
Polymerization
Polymers
Primary immunodeficiencies
Proteins
Research and analysis methods
Shutdowns
Signaling
T cell receptors
T cells
T-cell receptor
title Signaling through polymerization and degradation: Analysis and simulations of T cell activation mediated by Bcl10
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signaling%20through%20polymerization%20and%20degradation:%20Analysis%20and%20simulations%20of%20T%20cell%20activation%20mediated%20by%20Bcl10&rft.jtitle=PLoS%20computational%20biology&rft.au=Campanello,%20Leonard&rft.date=2021-05-20&rft.volume=17&rft.issue=5&rft.spage=e1007986&rft.epage=e1007986&rft.pages=e1007986-e1007986&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007986&rft_dat=%3Cgale_plos_%3EA665274342%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-3c870395b4d836e8c69ea50f9b27da3b92b202ad539ae142ddf51cd940ac31ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541866513&rft_id=info:pmid/34014917&rft_galeid=A665274342&rfr_iscdi=true